Jump to ContentJump to Main Navigation
Show Summary Details

Acta Geophysica

6 Issues per year


IMPACT FACTOR 2015: 0.945
5-year IMPACT FACTOR: 1.061

SCImago Journal Rank (SJR) 2015: 0.581
Source Normalized Impact per Paper (SNIP) 2015: 0.779
Impact per Publication (IPP) 2015: 0.937

Open Access
Online
ISSN
1895-7455
See all formats and pricing
Volume 62, Issue 2 (Apr 2014)

Issues

Lidar observations of volcanic dust over Polish Polar Station at Hornsund after eruptions of Eyjafjallajökull and Grímsvötn

Grzegorz Karasiński
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
  • Email:
/ Michał Posyniak
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
  • Institute of Geophysics, Faculty of Physics, University of Warsaw, Warszawa, Poland
  • Email:
/ Magdalena Bloch
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
  • Email:
/ Piotr Sobolewski
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
  • Email:
/ Łukasz Małarzewski
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
  • Department of Climatology, Faculty of Earth Sciences University of Silesia, Sosnowiec, Poland
  • Email:
/ Jakub Soroka
  • Institute of Geophysics, Polish Academy of Sciences, Warszawa, Poland
  • Hydrological and Meteorological Station in Gorzów Wielkopolski, Institute of Meteorology and Water Management — National Research Institute (IMGW-PIB), Warszawa, Poland
  • Email:
Published Online: 2014-01-14 | DOI: https://doi.org/10.2478/s11600-013-0183-4

Abstract

Two significant volcanic eruptions, i.e., Eyjafjallajökull (April–May 2010) and Grímsvötn (May 2011) took place recently in Iceland. Within a few days after eruptions, layers of high aerosol concentration have been observed by multiwavelength lidar of the Polish Polar Station at Hornsund, Svalbard. Measurements of the aerosol’s optical properties indicated a possible presence of volcanic ash transported over the Station. The latter presumption was confirmed by the computed backward trajectories of air masses, showing their paths passing over the location of volcanoes.

Keywords: lidar; remote sensing; atmospheric aerosol; air mass trajectories; Arctic

  • [1] Ångström, A. (1964), The parameters of atmospheric turbidity, Tellus 16,1, 64–75, DOI: 10.1111/j.2153-3490.1964.tb00144.x. http://dx.doi.org/10.1111/j.2153-3490.1964.tb00144.x [Crossref]

  • [2] Bazhenov, O.E., V.D. Burlakov, S.I. Dolgii, and A.V. Nevzorov (2012), Lidar observations of aerosol disturbances of the stratosphere over Tomsk (56.5°N; 85.0°E) in volcanic activity period 2006–2011, Int. J. Optics 2012, 1–10, DOI: 10.1155/2012/786295. http://dx.doi.org/10.1155/2012/786295

  • [3] Bloch, M., and G. Karasiński (2014), Water vapour mixing ratio profiles over Hornsund, Arctic. Intercomparison of lidar and AIRS results, Acta Geophys. 62,2, 290–301, DOI: 10.2478/s11600-013-0168-3 (this issue). http://dx.doi.org/10.2478/s11600-013-0168-3 [Crossref]

  • [4] Bodhaine, B.A., N.B. Wood, E.G. Dutton, and J.R. Slusser (1999), On Rayleigh optical depth calculations, J. Atmos. Oceanic Technol. 16,11, 1854–1861, DOI: 10.1175/1520-0426(1999)016〈1854:ORODC〉2.0.CO;2. http://dx.doi.org/10.1175/1520-0426(1999)016<1854:ORODC>2.0.CO;2 [Crossref]

  • [5] Campanelli, M., V. Estelles, T. Smyth, C. Tomasi, M.P. Martìnez-Lozano, B. Claxton, P. Muller, G. Pappalardo, A. Pietruczuk, J. Shanklin, S. Colwell, C. Wrench, A. Lupi, M. Mazzola, C. Lanconelli, V. Vitale, F. Congeduti, D. Dionisi, F. Cardillo, M. Cacciani, G. Casasanta, and T. Nakajima (2011), Monitoring of Eyjafjallajökull volcanic aerosol by the new European Skynet Radiometers (ESR) network, Atmos. Environ. 48, 33–45, DOI: 10.1016/j.atmosenv.2011.09.070. http://dx.doi.org/10.1016/j.atmosenv.2011.09.070 [Crossref]

  • [6] Draxler, R.R., and G.D. Rolph (2012), HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) model access via NOAA ARL READY website NOAA Air Resources Laboratory, Silver Spring, USA, http://ready.arl.noaa.gov/HYSPLIT.php.

  • [7] Eck, T.F., B.N. Holben, A. Sinyuk, R.T. Pinker, P. Goloub, H. Chen, B. Chatenet, Z. Li, R.P. Singh, S.N. Tripathi, J.S. Reid, D.M. Giles, O. Dubovik, N.T. O’Neill, A. Smirnov, P. Wang, and X. Xia (2010), Climatological aspects of the optical properties of fine/coarse mode aerosol mixtures, J. Geophys. Res. 115,D19, D19205, DOI: 10.1029/2010JD014002. http://dx.doi.org/10.1029/2010JD014002 [Crossref] [Web of Science]

  • [8] Ernst, K., S. Chudzyński, G. Karasiński, A. Pietruczuk, and T. Stacewicz (2003), Multiwavelength lidar for determination of the atmospheric aerosol size distribution, Proc. SPIE 5229, 45–50, DOI: 10.1117/12.520590. http://dx.doi.org/10.1117/12.520590 [Crossref]

  • [9] Forster, P., V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schultz, and R. Van Dorland (2007), Changes in atmospheric constituents and in radiative forcing. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (eds.), Cli mate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 129–234, Cambridge University Press, Cambridge.

  • [10] Hoffmann, A., C. Ritter, M. Stock, M. Shiobara, A. Lampert, M. Maturilli, T. Orgis, R. Neuber, and A. Herber (2009), Ground-based lidar measurements from Ny-Ålesund during ASTAR 2007, Atmos. Chem. Phys. 9,22, 9059–9081, DOI: 10.5194/acp-9-9059-2009. http://dx.doi.org/10.5194/acp-9-9059-2009 [Crossref]

  • [11] Holben, B.N., T.F. Eck, I. Slutsker, D. Tanré, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankoviak, and A. Smirnov (1998), AERONET — A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ. 66,1, l–16, DOI: 10.1016/S0034-4257(98)00031-5. http://dx.doi.org/10.1016/S0034-4257(98)00031-5 [Crossref]

  • [12] Hornsund GLACIO-TOPOCLIM (2013), Hornsund GLACIO-TOPOCLIM database 2010, http://www.glacio-topoclim.org.

  • [13] Jakobsdóttir, S.S., G. Sigurðsson, Ó.ℋ. Árnason, and M. Tumi (2011), Grímsvötn volcano, Status Report: 22 May 2011.

  • [14] Karasiński, G., A.E. Kardaś, K. Markowicz, S.P. Malinowski, T. Stacewicz, K. Stelmaszczyk, S. Chudzyński, W. Skubiszak, M. Posyniak, A.K. Jagodnicka, C. Hochhertz, and L. Woeste (2007), LIDAR investigation of properties of atmospheric aerosol, Eur. Phys. J. Spec. Top. 144, 129–138, DOI: 10.1140/ epjst/e2007-00117-8. http://dx.doi.org/10.1140/epjst/e2007-00117-8 [Crossref]

  • [15] Kardaś, A.E., K.M. Markowicz., K. Stelmaszczyk, G. Karasiński, S.P. Malinowski, T. Stacewicz, L. Woeste, and C. Hochhertz (2010), Saharan aerosol sensed over Warsaw by backscatter depolarization lidar, Opt. Appl. 40,1, 219–237.

  • [16] Karlsdóttir, S., Á.G. Gylfason, Á. Höskuldsson, B. Brandsdóttir, E. Ilyinskaya, M.T. Gudmundsson, ℋ. Högnadóttir, Editor: Barði ℋorkelsson (2012), The 2010 Eyjafjallajökull eruption, Iceland, Report to ICAO — June 2012.

  • [17] Kerminen, V.M., J.V. Niemi, H. Timonen, M. Aurela, A. Frey, S. Carbone, S. Saarikoski, K. Teinilä, J. Hakkarainen, J. Tamminen, J. Vira, M. Prank, M. Sofiev, and R. Hillamo (2011), Characterization of a volcanic ash episode in southern Finland caused by the Grimsvötn eruption in Iceland in May 2011, Atmos. Chem. Phys. 11,23, 12227–12239, DOI: 10.5194/acp-11-12227-2011. http://dx.doi.org/10.5194/acp-11-12227-2011 [Web of Science] [Crossref]

  • [18] Klett, J.D. (1981), Stable analytical inversion solution for processing lidar returns, Appl. Opt. 20,2, 211–220, DOI: 10.1364/AO.20.000211. http://dx.doi.org/10.1364/AO.20.000211 [Crossref]

  • [19] Lampert, A., J. Ström, C. Ritter, R. Neuber, Y.J. Yoon, N.Y. Chae, and M. Shiobara (2012), Inclined lidar observations of boundary layer aerosol particles above the Kongsfjord, Svalbard, Acta Geophys. 60,5, 1287–1307, DOI: 10.2478/s11600-011-0067-4. http://dx.doi.org/10.2478/s11600-011-0067-4 [Web of Science] [Crossref]

  • [20] Learmount, D. (2011), European procedures cope with new ash cloud. Flight global, http://www.flightglobal.com/news/articles/european-proceedures-copewith-new-ash-cloud-357246.

  • [21] Marenco, F., B. Johnson, K. Turnbull, S. Newman, J. Haywood, H. Webster, and H. Ricketts (2011), Airborne lidar observations of the 2010 Eyjafjallajökull volcanic ash plume, J. Geophys. Res. 116,D21, D00U05, DOI: 10.1029/2011JD016396. [Crossref]

  • [22] Markowicz, K.M., T. Zieliński, A. Pietruczuk, M. Posyniak, O. Zawadzka, P. Makuch, I.S. Stachlewska, A.K. Jagodnicka, T. Petelski, W. Kumala, P. Sobolewski, and T. Stacewicz (2012), Remote sensing measurements of the volcanic ash plume over Poland in April 2010, Atmos. Environ. 48, 66–75, DOI: 10.1016/j.atmosenv.2011.07.015. http://dx.doi.org/10.1016/j.atmosenv.2011.07.015 [Crossref]

  • [23] McCormick, M.P., L.W. Thomason, and C.R. Trepte (1995), Atmospheric effects of the Mt Pinatubo eruption, Nature 373,6513, 399–404, DOI: 10.1038/373399a0. http://dx.doi.org/10.1038/373399a0 [Crossref]

  • [24] Menon, S., A.D. Del Genio, D. Koch, and G. Tselioudis (2002), GCM simulations of the aerosol indirect effect: Sensitivity to cloud parameterization and aerosol burden, J. Atmos. Sci. 59,3, 692–713, DOI: 10.1175/1520-0469 (2002)059〈0692:GSOTAI〉2.0.CO;2. http://dx.doi.org/10.1175/1520-0469(2002)059<0692:GSOTAI>2.0.CO;2 [Crossref]

  • [25] Nemuc, A., I.S. Stachlewska, J. Vasilescu, A. Górska, D. Nicolae, and C. Talianu (2014), Optical properties of long-range transported volcanic ash over Romania and Poland during Eyjafjallajökull eruption in 2010, Acta Geophys. 62,2, 350–366, DOI: 10.2478/s11600-013-0180-7 (this issue). http://dx.doi.org/10.2478/s11600-013-0180-7 [Web of Science] [Crossref]

  • [26] Papayannis, A., R.E. Mamouri, V. Amiridis, E. Giannakaki, I. Veselovskii, P. Kokkalis, G. Tsaknakis, D. Balis, N.I. Kristiansen, A. Stohl, M. Korenskiy, K. Allakhverdiev, M.F. Huseyinoglu, and T. Baykara (2012), Optical properties and vertical extension of aged ash layers over the Eastern Mediterranean as observed by Raman lidars during the Eyjafjallajökull eruption in May 2010, Atmos. Environ. 48, 56–65, DOI: 10.1016/j.atmosenv.2011. 08.037. http://dx.doi.org/10.1016/j.atmosenv.2011.08.037 [Web of Science] [Crossref]

  • [27] Pietruczuk, A., and G. Karasiński (2010), Lidar at Polish Polar Station, instrument design and first results. In: Proc. 25th International Laser Radar Conference, 5–9 July 2010, St. Petersburg, Russia, 163–165.

  • [28] Pietruczuk, A., J.W. Krzyścin, J. Jarosławski, J. Podgórski, P. Sobolewski, and J. Wink (2010), Eyjafjallajökull volcano ash observed over Belsk (52°N, 21°E), Poland, in April 2010, Int. J. Remote Sens. 31,15, 3981–3986, DOI: 10.1080/01431161.2010.498030. http://dx.doi.org/10.1080/01431161.2010.498030 [Crossref]

  • [29] Rozwadowska, A., T. Zieliński, T. Petelski, and P. Sobolewski (2010), Cluster analysis of the impact of air back-trajectories on aerosol optical properties at Hornsund, Spitsbergen, Atmos. Chem. Phys. 10,3, 877–893, DOI: 10.5194/acp-10-877-2010. http://dx.doi.org/10.5194/acp-10-877-2010 [Crossref]

  • [30] Seinfeld, J.H., and S.N. Pandis (1998), Atmospheric Chemistry and Physics. From Air Pollution to Climate, John Wiley & Sons, New York.

  • [31] Stachlewska, I.S., and C. Ritter (2010), On retrieval of lidar extinction profiles using Two-Stream and Raman techniques, Atmos. Chem. Phys. 10,6, 2813–2824, DOI: 10.5194/acp-10-2813-2010. http://dx.doi.org/10.5194/acp-10-2813-2010 [Web of Science] [Crossref]

  • [32] Stachlewska, I.S., R. Neuber, A. Lampert, C. Ritter, and G. Wehrle (2010), AMALi — the Airborne Mobile Aerosol Lidar for Arctic research, Atmos. Chem. Phys. 10,6, 2947–2963, DOI: 10.5194/acp-10-2947-2010. http://dx.doi.org/10.5194/acp-10-2947-2010 [Web of Science] [Crossref]

  • [33] Tesche, M., P. Glantz, C. Johansson, M.G. Norman, A. Hiebsch, P. Seifert, A. Ansmann, R. Engelmann, and D. Althausen (2012), Volcanic ash over Scandinavia originating from the Grímsvötn eruptions in May 2011, J. Geophys. Res. 117,D9, D09201, DOI: 10.1029/2011JD017090. http://dx.doi.org/10.1029/2011JD017090 [Crossref]

About the article

Published Online: 2014-01-14

Published in Print: 2014-04-01


Citation Information: Acta Geophysica, ISSN (Online) 1895-7455, DOI: https://doi.org/10.2478/s11600-013-0183-4. Export Citation

© 2013 Institute of Geophysics, Polish Academy of Sciences. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. T. Prata, S. T. Siems, and M. J. Manton
Journal of Geophysical Research: Atmospheres, 2015, Volume 120, Number 7, Page 2928
[2]
Isidro A. Pérez, Florinda Artuso, Mastura Mahmud, Umesh Kulshrestha, M. Luisa Sánchez, and M. Ángeles García
Advances in Meteorology, 2015, Volume 2015, Page 1
[3]
Anca Nemuc, Iwona Stachlewska, Jeni Vasilescu, Anna Górska, Doina Nicolae, and Camelia Talianu
Acta Geophysica, 2014, Volume 62, Number 2
[4]
Magdalena Bloch and Grzegorz Karasiński
Acta Geophysica, 2014, Volume 62, Number 2

Comments (0)

Please log in or register to comment.
Log in