Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Chemica Iasi

The Journal of "Alexandru Ioan Cuza" University from Iasi

2 Issues per year

Open Access
Online
ISSN
2067-2446
See all formats and pricing
More options …

Ninhydrin-based spectrophotometric assays of trace cyanide

Andriana Surleva
  • Analytical Chemistry Department, University of Chemical Technology and Metallurgy,8 St. Kl. Ohridski av., 1756 Sofia, Bulgaria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marius Zaharia / Laura Ion / Robert Vasile Gradinaru / Gabi Drochioiu / Ionel Mangalagiu
Published Online: 2013-08-08 | DOI: https://doi.org/10.2478/achi-2013-0006

Abstract

The extreme toxicity of cyanide, its wide industrial application as well as its continued illegal use generate research interest in different fields of science, imposing multidisciplinary approach to study cyanide poisoning. We show here that the reaction between cyanide and ninhydrin can be performed at ambient conditions; however, the ninhydrin reagent has to be freshly prepared in oxygen free solvent. Besides, we show that the reading of the absorbance at 485 nm might be more suitable and reliable than that at 590 nm, where the pH-dependent blue colored cyanide-ninhydrin adduct is less stable. Ninhydrin-based color reagent can be used to quantify the cyanide released from plant seeds. In sodium carbonate medium, the proposed assay is fast, cheap and environmentally friendly

Keywords : Cyanide analysis; Ninhydrin; Metal ions; Spectrophotometry

  • 1. Sykes, A. H., Early studies on the toxicology of cyanide. In Cyanide inBiology; B. Vennesland, E. E. Conn, C. J. Knowles, J. Westley, F. Wissing, Eds.; Academic Press: New York, 1981, pp 1-9.Google Scholar

  • 2. Baskin, S. I., Kelly, J. B., Maliner, B. I., Rockwood, G. A., Zoltani, C. Cyanide poisoning. In Medical aspects of chemical warfare; S. D. Tuorinsky, Ed.; TMM Publications: Washington, 2008; 11; pp 372-410.Google Scholar

  • 3. Pritchard, J. D., Health Protection Agency. CHAPD, HPA, version 2, 2007; pp 2-11.Google Scholar

  • 4. Barceloux, D. G. Medical Toxicology of Natural Substances: Foods, Fungi,Medicinal Herbs, Toxic Plants, and Venomous Animals; John Wiley & Sons., Hoboken, NJ, 2008; pp 44-53.Google Scholar

  • 5. Surleva, A.; Gradinaru, R.; Drochioiu G. Cyanide poisoning: from physiology to forensic analytical chemistry. Intern. J. Crim. Invest. 2012, 2, 79-101.Google Scholar

  • 6. Ma, J.; Dasgupta, P. Recent developments in cyanide detection: A review. Anal. Chim. Acta. 2010, 673, 117-125.Web of ScienceGoogle Scholar

  • 7. Abbasi, S.; Valinezhad, R.; Khani, H. A novel kinetic spectrophotometric method for the determination of ultra trace amount of cyanide. Spectrochim. Acta, Part A. 2010, 77, 112-116.Google Scholar

  • 8. Isaad, J.; El Achari A. A novel glycoconjugated N-acetylamino aldehyde hydrazone azo dye as chromogenic probe for cyanide detection in water. Anal. Chim. Acta. 2011, 694, 120-127.Web of ScienceGoogle Scholar

  • 9. Kim, M. H.; Kim, S.; Jang, H. H.; Yi, S.; Seo, S. H.; Han, M. S. A gold nanoparticle-based colorimetric sensing ensemble for the colorimetric detection of cyanide ions in aqueous solution. Tetrahedron Lett. 2010, 51, 4712-4716.Google Scholar

  • 10. Fuku, X.; Iftikar, F.; Hess, E.; Iwuoha, E.; Baker, P. Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds. Anal. Chim. Acta. 2012, 730, 49-59.Web of ScienceGoogle Scholar

  • 11. Noroozifar, M.; Khorasani-Motlagh, M.; Taheri, A. Determination of cyanide in wastewaters using modified glassy carbon electrode with immobilized silver hexacyanoferrate nanoparticles on multiwall carbon nanotube. J. Hazard. Mater. 2011, 185, 255-261.Web of ScienceGoogle Scholar

  • 12. Wang, S.; Lei, Y.; Zhang, Y.; Tang, J.; Shen, G.; Yu, R. Hydroxyapatite nanoarray-based cyanide biosensor. Anal. Biochem. 2010, 398, 191-197.Web of ScienceGoogle Scholar

  • 13. Lv, X.; Liu, J.; Liu, Y.; Zhao, Y.; Chen, M.;Wang, P.; Guo, W. Rhodafluorbased chromo- and fluorogenic probe for cyanide anion. Sens. Actuators, B2011, 158, 405- 410.Web of ScienceGoogle Scholar

  • 14. Zhou, X.; Lv, X.; Hao, J.; Liu, D.; Guo, W. Coumarin-indanedione conjugate as a doubly activated Michael addition type probe for the colorimetric and ratiometric fluorescent detection of cyanide. Dyes Pigm. 2012, 95, 168-173.Google Scholar

  • 15. Xu, Z.; Pan, J.; Spring, D. R.; Cui, J.; Yoon, J. Ratiometric fluorescent and colorimetric sensors for Cu2+ based on 4,5-disubstituted-1,8-naphthalimide and sensing cyanide via Cu2+ displacement approach. Tetrahedron. 2010, 66, 1678-1683.Web of ScienceGoogle Scholar

  • 16. Boadas-Vaello, P.; Jover E.; Llorens, J.; Bayona, J. M. Determination of cyanide and volatile alkylnitriles in whole blood by headspace solid-phase microextraction and gas chromatography with nitrogen phosphorus detection. J. Chromatogr., B. 2008, 870, 17-21.Google Scholar

  • 17. Frison, G.; Zancanaro, F.; Favretto, D.; Ferrara, S. D. An improved method for cyanide determination in blood using solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2006, 20, 2932-2938.Google Scholar

  • 18. Meng, L.; Liu, X.; Wang, B.; Shen, G.; Wang, Zh.; Guo, M. Simultaneous derivatization and extraction of free cyanide in biological samples with homemade hollow fiber-protected headspace liquid-phase microextraction followed by capillary electrophoresis with UV detection. J. Chromatogr., B. 2009, 877, 3645-3651.Google Scholar

  • 19. Papezova, K.; Glatz, Z. J. Chromatogr., A Determination of cyanide in microliter samples by capillary electrophoresis and in-capillary enzymatic reaction with rhodanese. 2006, 1120, 268-272.Google Scholar

  • 20. Bruice, T. C.; Richards, F. M. Reaction of Cyanide with Triketohydrindane Hydrate (Ninhydrin). J. Org. Chem. 1958, 23, 145-146.Google Scholar

  • 21. Drochioiu G. Highly selective and sensitive reaction of cyanide with 2,2- dihydroxy-1,3-indanedione. Anal. Bioanal. Chem. 2002, 372, 744-747.Google Scholar

  • 22. Nagaraja, P; Kumar, M.; Yathirajan, H.; Prakash, J. Novel Sensitive Spectrophotometric Method for the Trace Determination of Cyanide in Industrial Effluent. Anal. Sci. 2002, 18, 1027-1030.Google Scholar

  • 23. Drochioiu, G.; Mangalagiu, I.; Avram, E.; Popa, K.; Dirtu, A. C.; Druta, I. Cyanide Reaction with Ninhydrin: Elucidation of Reaction and Interference Mechanisms. Anal. Sci. 2004, 20, 1443-1447.Google Scholar

  • 24. Drochioiu, G.; Popa, K.; Humelnicu, D.; Murariu, M.; Sandu, I.; Cecal A. Comparison of various sensitive and selective spectrophotometric assays of environmental cyanide. Toxicol. Environ. Chem. 2008, 90, 221 - 235.Google Scholar

  • 25. Themelis, D. G.; Karastogianni, S. C.; Tzanavaras, P. D. Selective determination of cyanides by gas diffusion-stopped flow-sequential injection analysis and an on-line standard addition approach. Anal. Chim. Acta. 2009,632, 93-100.Web of ScienceGoogle Scholar

  • 26. Santelli, R. E.; Micelli, A. S.; De Carvalho, M. F. B. Automated flow injection method for monitoring total cyanide concentration in petroleum refinery effluents using ninhydrin as color reagent. Spectroscopy Lett. 2006, 39, 605-618. Google Scholar

  • 27. Jain, A.; Pillai, A. K. K.V.; Sharma, N.; Verma, K. K. Headspace single-drop microextraction and cuvetteless microspectrophotometry for the selective determination of free and total cyanide involving reaction with ninhydrin. Talanta. 2010, 82, 758-765.Google Scholar

  • 28. Surleva, A.; Drochioiu G. A modified ninhydrin micro-assay for determination of total cyanogens in plants. Food Chem. 2013, 141, 2788-2794.Web of ScienceGoogle Scholar

  • 29. Herchi, W.; Arráez-Román, D.; Boukhchina, S.; Kallel, H. A review of the methods used in the determination of flaxseed components. Afr. J. Biotechnol.2012, 11, 724-731.Google Scholar

  • 30. Ganjewala, D.; Kumar, S.; Devi, S. A.; Ambika, K. Advances in cyanogenic glycosides biosynthesis and analyses in plants: A review. Acta BiologicaSzeged. 2010, 54, 1-14.Google Scholar

  • 31. Bjarnholt, N.; Rook, F.; Motawia, M. S.; Cornett, C.; Jørgensen, C.; Olsen, C. E.; Jaroszewski, J. W.; Bak, S.; Møller, B. L. Diversification of an ancient theme: Hydroxynitrile glucosides. Phytochem. 2008, 69, 1507-1516.Google Scholar

  • 32. Morant, V. A.; Jørgensen, K.; Jørgensen, C.; Møller B. L.; Bak, S. β-Glucosidases as detonators of plant chemical defense. Phytochemistry 2008, 69, 1795-1813. Web of ScienceGoogle Scholar

About the article

Published Online: 2013-08-08

Published in Print: 2013-05-01


Citation Information: Acta Chemica Iasi, Volume 21, Issue 1, Pages 57–70, ISSN (Online) 2067-2446, DOI: https://doi.org/10.2478/achi-2013-0006.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Simon Terver Ubwa, Monday Abel Otache, Gillian Ogbene Igbum, and Tseaa Shambe
Food and Nutrition Sciences, 2015, Volume 06, Number 12, Page 1078
[2]
Simon Terver Ubwa, Sunday Ogakwu Adoga, Raymond Lubem Tyohemba, and Tseaa Shambe
Food and Nutrition Sciences, 2015, Volume 06, Number 10, Page 836

Comments (0)

Please log in or register to comment.
Log in