Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Medica Martiniana

The Journal of Comenius University in Bratislava

3 Issues per year

Open Access
See all formats and pricing
More options …

Effects of Elevated Body Temperature on Control of Breathing

I. Zila
  • Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Calkovska
  • Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2011-03-03 | DOI: https://doi.org/10.2478/v10201-011-0008-6

Effects of Elevated Body Temperature on Control of Breathing

Changes in body temperature can be evoked mainly by alterations in the peripheral temperature, or modified by shifts in the central body temperature. Two conditions can lead to abnormal elevation of body temperature: hyperthermia or fever. As regards respiratory system, exposure to heat stress is accompanied by marked alterations in breathing, especially by an increase in ventilation. Ventilation rises due to an increase in central output from hypothalamus or brainstem, an increase in peripheral output via skin temperature receptors, an increase in central or/and peripheral chemoreceptor output or sensitivity and can be also mediated through changes in thermoregulatory mechanisms.

This review summarizes results of previous studies as well as of experiments done in our laboratory in order to elucidate the mechanisms included in respiratory changes under heat stress.

Keywords: heat stress; fever; hyperthermia; control of breathing

  • Cabanac M, White MD. Core temperature thresholds for hyperpnea during passive hyperthermia in humans. Eur J Appl Physiol Occup Physiol 1995; 71: 71-6.PubMedGoogle Scholar

  • Webb P. The physiology of heat regulation. Am J Physiol 1995; 268: R838.Google Scholar

  • Simon HB. Hyperthermia. N Engl J Med 1993; 329: 483-87.Google Scholar

  • Gisolfi CV, Wenger CB. Temperature regulation during exercise: old concepts, new ideas. Exercise and Sport Sciences Reviews 1984; 12: 339-72.Google Scholar

  • Boulant JA: Role of the preoptic-anterior hypothalamus in thermoregulation and fever. Clin Infect Dis 2000; 31: S157. Mackowiak PA: Concepts of fever. Arch Intern Med 1998; 158:1870.Google Scholar

  • Romanovsky AA, Kulchitsky VA, Simons CT, Sugimoto N. Methodology of fever research: why are polyphasic fevers often thought to be biphasic? Am J Physiol 1998; (1 Pt 2): R332-8.Google Scholar

  • Dogan DM, Ataoglu H, Akarsu ES. Effects of different serotypes of Escherichia coli lipopolysaccharides on body temperature in rats. Life Sciences 2000; 67: 2319-29.Google Scholar

  • Haldane JS. The influence of high air temperatures. Journal of Hygiene 1905; 55: 497-513.Google Scholar

  • Plevková J, Brozmanová M, Tatár M. The effect of intensified nasal breathing on the cough reflex intensity in Guinea pigs with ovalbumin induced rhinitis. Acta Med Mart 2004; 4(2): 3-11.Google Scholar

  • Javorka K, Calkovska A, Petraskova M, Gecelovska V. Cardiorespiratory parameters and respiratory reflexes in rabbits during hyperthermia. Physiol Res 1996; 45(6): 439-47.PubMedGoogle Scholar

  • Brozmanova A, Jochem J, Javorka K, Zila I, Zwirska-Korczala K. Effects of diuretic-induced hypovolemia/isosmotic dehydration on cardiorespiratory responses to hyperthermia and its physical treatment in rabbits. Int J Hyperthermia 2006; 22: 135-47.Google Scholar

  • Brozmanova A, Jochem J, Javorka K, Zila I, Zwirska-Korczala K. Diuretic-induced dehydration/hypovolemia inhibits thermal panting in rabbits. Respir Physiol Neurobiol 2006; 1: 99-102.Google Scholar

  • Boden AG, Harris MC, Parkes MJ. The preoptic area in the hypothalamus is the source of the additional respiratory drive at raised body temperature in anaesthetised rats. Exp Physiol 2000; 85(5): 527-37.PubMedCrossrefGoogle Scholar

  • Inomoto T, Mercer JB, Simon E. Interaction between hypothalamic and extrahypothalamic body temperatures in the control of panting in rabbits. Pflugers Arch 1983; 398(2): 142-6.Google Scholar

  • Ni H, Schechtman VL, Zhang J, Glotzbach SF, Harper RM. Respiratory responses to preoptic/anterior hypothalamic warming during sleep in kittens. Reprod Fertil Dev 1996; 8(1): 79-86.CrossrefPubMedGoogle Scholar

  • Tryba AK, Ramirez JM. Hyperthermia modulates respiratory pacemaker bursting properties. J Neurophysiol 2004; 92(5): 2844-52.PubMedCrossrefGoogle Scholar

  • Preas HL 2nd, Jubran A, Vandivier RW, Reda D, Godin PJ, Banks SM, Tobin MJ, Suffredini AF. Effect of endotoxin on ventilation and breath variability: role of cyclooxygenase pathway. Am J Respir Crit Care Med 2001; 164(4): 620-6.Google Scholar

  • Saxton C. Effects of severe heat stress on respiration and metabolic rate in resting man. Aviat Space Environ Med 1981; 52(5): 281-6.PubMedGoogle Scholar

  • Poliaček I, Jakuš J, Halašová E, Baráni H, Muríň P, Bolser D. Defensive airway reflexes induce widely spreading Fos labelling in the cat brainstem. Acta Med Mart 2008; 8(2): 3-15.Google Scholar

  • Breuer J. Self-steering of respiratiom through the nerves vagus. In: R. Porter (Ed.), Breathing: Hering-Breuer Centenary Symposium, 1868, Churchill 1970; 365-394.Google Scholar

  • Bradley GW, von Euler C, Marttila I, Roos B. Steady state effects of CO2 and temperature on the relationship between lung volume and inspiratory duration (Hering-Breuer threshold curve). Acta Physiol Scand 1974; 92(3): 351-63.Google Scholar

  • Merazzi D, Mortola JP. Hering-Breuer reflex in conscious newborn rats: effect of changes in ambient temperature during hypoxia. J Appl Physiol 1999; 87(5): 1656-61.PubMedGoogle Scholar

  • Werner MF, Fraga D, Melo MC, Souza GE, Zampronio AR. Importance of the vagus nerve for fever and neutrophil migration induced by intraperitoneal LPS injection. Inflamm Res 2003; 52: 291-6.Google Scholar

  • Schoener EP, Frankel HM. Effect of hyperthermia and PaCO2 on the slowly adapting pulmonary stretch receptor. Am J Physiol 1972; 222(1):68-72.Google Scholar

  • Žila I, Čalkovská A, Mokrá D, Javorka M, Pullman R st., Javorka K. LPS a nervová regulácia dýchania. Nové poznatky v respirológii. Jesseniova lekárska fakulta Martin 2010; s. 35-39.Google Scholar

  • Plitman JD, Snapper JR. Effects of endotoxin on airway function. In: Brigham KL (Ed.) Endotoxin and the lungs, Marcel Dekker, New York 1994; pp. 133-52.Google Scholar

  • Tang GJ, Kou YR, Lin YS. Peripheral neural modulation of endotoxin-induced hyperventilation. Crit Care Med 1998; 26: 1558-63.Google Scholar

  • Orr JA, Shams H, Karla W, Peskar BA, Scheid P. Transient ventilatory responses to endotoxin infusion in the cat are mediated by thromboxane A2. Respir Physiol 1993; 93: 189-201.Google Scholar

  • Yang YL, Tang GJ, Kou YR. Mediator mec hanisms of the airway inflammation during the early phase of endotoxemia in guinea pigs. FASEB J 2000; 14: A604.Google Scholar

  • Jarreau PH, D'Ortho MP, Boye V, Harf A, Macquin-Mavier I. Effects of capsaicin on the airway responses to inhaled endotoxin in the guinea pig. Am J Respir Cell Mol Biol 1994; 149: 128-33.Google Scholar

  • Long NC, Frevert CW, Shore SA. Role o f C fibres in the inflammatory response to intratracheal lipopolysaccharide. Am J Physiol 1996; 271: L425-L431.Google Scholar

  • Lai CJ, Ho CY, Kou YR. Activation of lung vagal sensory receptors by circulatory endotoxin in rats. Life Sci. 2002; 70(18):2125-38.Google Scholar

  • Forster HV, Smith CA. Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H+. J Appl Physiol 2010; 108: 989-94.Google Scholar

  • Tabatabai M. Respiratory and cardiovascular responses resulting from heating medulla oblongata in cats. Am J Physiol 1972; 222: 1558-64.Google Scholar

  • Paintal AS. The responses of chemoreceptors at reduced temperatures. J Physiol 1971; 217: 1-18.Google Scholar

  • McQueen DS, Eyzaguirre C. Effects of temperature on carotid chemoreceptor and baroreceptor activity. J Neurophysiol 1974; 37: 1287-96.Google Scholar

  • Baron M, Eyzaguirre C. Thermal responses of carotid body cells. J Neurobiol 1975; 6: 521-527.CrossrefPubMedGoogle Scholar

  • Baron M, Eyzaguirre C. Effects of temperature on some membrane characteristics of carotid body cells. Am J Physiol 1977; 233: C35-C46.Google Scholar

  • Alcayaga J, Sanhueza Y, Zapata P. Thermal dependence of chemosensory activity in the carotid body superfused in vitro. Brain Res 1993; 600: 103-11.Google Scholar

  • Landauer RC. Pepper DR, Kumar P. Interaction of temperature and CO2 in the adult rat carotid body, in vitro. J Physiol 1995;489P: 162P-163P.Google Scholar

  • Cunningham DJC, O'Riordan JLH. The effect of a rise in the temperature of the body in the respiratory response to carbon dioxide at rest. Q J Exp Physiol 1957; 42: 329-45.Google Scholar

  • Widdicombe JG, Winning A. Effects of hypoxia, hypercapnia and changes in body temperature on the pattern of breathing in cats. Respir Physiol 1974; 21: 203-21.Google Scholar

  • Maskrey M. Body temperature effects on hypoxic and hypercapnic responses in awake rats. Am J Physiol 1990; 259: 492-98.Google Scholar

  • Cherniack NS, von Euler C, Homma I, Kao FF. Graded changes in central chemoceptor input by local temperature changes on the ventral surface of medulla. J Physiol 1979; 287: 191-211.Google Scholar

  • Jennings DB, Laupacis A. The effect of body warming on the ventilatory response to CO2 in the awake dog. Respir Physiol 1982; 49: 355-69.Google Scholar

  • Baker JF, Goode RC, Duffin J. The efect of a rise in body temperature on the central-chemoreflex ventilatory response to carbon dioxide. Eur J Appl Physiol 1996; 72: 537-41.Google Scholar

  • White MD. Components and mechanisms of thermal hyperpnea. J Appl Physiol 2006; 101: 655-63.Google Scholar

  • Zila I, Brozmanova A, Javorka M, Calkovska A, Javorka K. Effects of hypovolemia on hypercapnic ventilatory response in experimental hyperthermia. J Physiol Pharmacol 2007; 58(suppl. 5); 781-90.Google Scholar

  • Waldrop TG, Mullins DC, Millhorn DE. Control of respiration by the hypothalamus and by the feedback from contracting muscles in cats. Respir Physiol 1986; 64: 317-28.Google Scholar

  • Wunnenberg W, Baltruschat D. Temperature regulation of golden hamster during acute hypercapnia. J Therm Biol 1982; 7: 83-6.Google Scholar

  • Berquin P, Bodineau L, Gros F, Larnicol N. Brainstem and hypothalamic areas involved in respiratory chemoreflexes: a Fos study in adult rats. Brain Res 2000; 28: 30-40.Google Scholar

  • Honda Y. Role of carotid chemoreceptors in control of breathing at rest and in exercise: studies on human subjects with bilateral carotid body resection. Jpn J Physiol 1985; 35: 535-44.Google Scholar

  • Dupré RK, Hicks JW, Wood SC. Effect of temperature on chemical control of ventilation in Mexican black iguanas. Am J Physiol 1989; 257: R1258-63.Google Scholar

  • Bonora M, Gautier H. Effects of hypoxia on thermal polypnea in intact and carotid body-denervated conscious cats. J Appl Physiol 1989; 67(2): 578-83.Google Scholar

  • Watanabe T, Kumar P, Hanson MA. Effect of ambient temperature on respiratory chemoreflex in unanaesthetized kittens. Respir Physiol 1996; 106: 239-46.Google Scholar

  • Zila I, Brozmanova A, Javorka K, Javorka M, Calkovska A, Petraskova M. Chemical control of breathing in anaesthetized rabbits during hyperthermia and its recovery by body surface cooling. Acta Med Mart 2003; 1: 10-14.Google Scholar

  • Natalino MR, Zwillich CW, Weil JV. Effects of hyperthermia on hypoxic ventilatory response in normal man. J Lab Clin Med 1977; 89: 564-72.Google Scholar

  • Petersen ES, Vejby-Christensen H. Effects of body temperature on ventilatory response to hypoxia and breathing pattern in man. J Appl Physiol 1977; 42(4): 492-500.Google Scholar

  • Severinghaus J, Powell FL, Hornbein T, Dempsey JA. Proposed consensus methods of measuring human hypoxic ventilatory response at sea level. The 14th International Hypoxia Symposium, edited by Hackett P, Roach R, Lake Louise, Alberta, Canada, 2005; 57 p.Google Scholar

About the article

Published Online: 2011-03-03

Published in Print: 2011-03-01

Citation Information: Acta Medica Martiniana, Volume 11, Issue Supplement 1, Pages 24–30, ISSN (Print) 1335-8421, DOI: https://doi.org/10.2478/v10201-011-0008-6.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Galina Churkina
Frontiers in Ecology and Evolution, 2016, Volume 3

Comments (0)

Please log in or register to comment.
Log in