Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Medica Martiniana

The Journal of Comenius University in Bratislava

3 Issues per year

Open Access
See all formats and pricing
More options …

Oxidative Damage to Proteins and Lipids During Ageing

S. Kuka
  • Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Z. Tatarkova
  • Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ P. Kaplan
  • Department of Medical Biochemistry, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-09-11 | DOI: https://doi.org/10.2478/v10201-011-0027-3

Oxidative Damage to Proteins and Lipids During Ageing

The present work is a theoretical study in the field of monitoring oxidative damage to proteins and lipids during ageing. The basic terminology and interactions are discussed as well as the sources of oxidants and their elimination through antioxidant protection. We focus on the effects of oxidative stress on the biomolecules (proteins, lipids and DNA), the role of mitochondria, antioxidants, physical activity and caloric restriction in relation to ageing. Previous research indicates the crucial role of mitochondria in the ageing process by their formation of oxidants, the accumulation of oxidative damage to mtDNA and other biomolecules leading to impairment of mitochondrial function, energy failure, apoptosis and necrosis. Although the role of oxidative stress in the ageing process is evident and well documented, the precise mechanisms of its relationships remain largely unknown. Further research is needed to clarify them and to show ways to slow down the ageing process.

Keywords: ageing; oxidative damage; biomolecules; mitochondria

  • Judge S, Leeuwenburgh C. Cardiac mitochondrial bioenergetics, oxidative stress, and aging. Am J Physiol Cell Physiol. 2007; 292(6): C1983-92Google Scholar

  • Harman D. Aging: a theory based on free radicals and radiation chemistry. J Gerontol. 1956; 2: 298-300Google Scholar

  • Dufour E, Larsson NG. Understanding aging: revealing order out of chaos. Biochim Biophys Acta. 2004; 1658(1-2): 122-32Google Scholar

  • Osiewacz HD. Role of mitochondria in ageing and age-related disease. Exp Gerontol. 2010; 45(7-8): 465CrossrefPubMedGoogle Scholar

  • Cocco T, Sgobbo P, Clemente M, Lopriore B, Grattagliano I, Di Paola M, Villani G. Tissue-specific changes of mitochondrials functions in aged rats: effect of a long- term dietary treatment with N-acetylcysteine. Free Radic Biol Med. 2005; 38(6): 796-805Google Scholar

  • Kaplán P. Kardiovaskulárne ochorenia a voľné radikály. P+M Turany, 2010; 120 s.Google Scholar

  • Stadtman ER. Protein oxidation and aging. Free Radical Research. 2006; 40(12): 1250-8CrossrefPubMedGoogle Scholar

  • Catalá A. Lipid peroxidation of membrane phospholipids generates hydroxy-alkenas and oxidized phospholipids active in physiological and/or pathological conditions. Chem Phys Lipids. 2009; 157(1): 1-11Google Scholar

  • Halliwell B, Gutteridge JMC. Free radicals in biology and medicine: Antioxidant defences. 3rd ed. New York: Oxford Univ Press; 1999. Halliwell B, Gutteridge JMC eds.Google Scholar

  • Sivoňová M, Tatarková Z, Ďuračková Z, Dobrota D, Lehotský J, Matáková T, Kaplán P. Relationship between antioxidant potential and oxidative damage to lipids, proteins and DNA in aged rats. Physiol. Res. 2007; 56(6): 757-64Google Scholar

  • Ďuračková Z. Some current insights into oxidative stress. Physiol Res. 2010; 59(4): 459-69PubMedGoogle Scholar

  • Harman D. The biologic clock: the mitochondria? J Am Geriatr Soc. 1972; 20(4): 145-7PubMedGoogle Scholar

  • Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial ROS-induced ROS release: an update and review. Biochim Biophys Acta. 2006; 1757(5-6): 509-17Google Scholar

  • Romano AD, Serviddio G, de Matthaeis A, Bellanti F, Vendemiale G. Oxidative stress and aging. Nephrol. 2010; 23(Suppl. 15): S29-36Google Scholar

  • Gao L, Laude K, Cai H. Mitochondrial patophysiology, reactive oxygen species, and cardiovascular diseases. Vet Clin North Am Small Anim Pract. 2008; 38(1): 137-55CrossrefGoogle Scholar

  • Trifunovic A, Larsson NG. Mitochondrial disfunction as a cause of ageing. J Intern Med. 2008; 263(2):167-78Google Scholar

  • Esterhazy D, King MS, Yakovlev G, Hirst J. Production of reactive oxygen species by complex I (NADH:ubiquinone oxidoreductase) from Escherichia coli and comparison to the enzyme from mitochondria. Biochemistry. 2008; 47(12): 3964-71CrossrefPubMedGoogle Scholar

  • Zhang HM, Zhang Y, Zhang BX. The role of mitochondrial complex III in melatonin-induced ROS production in cultured mesangial cells. J Pineal Res. 2011; 50(1): 78-82.CrossrefPubMedGoogle Scholar

  • Strkov AA, Fiskum G, Chinopoulos C, Lorenzo BJ, Browne SE, Patel MS, Beal MF. Mitochondrial alphaketoglutarate dehydrogenase complex generates reactive oxygen species. J Neurosci. 2004; 24(36): 7779-88CrossrefGoogle Scholar

  • Wang W, Fang H, Groom L, Cheng A, Zhang W, Liu J, Wang X, Li K, Han P, Zheng M, Yin J, Mattson MP, Kao JP, Lakatta EG, Sheu SS, Ouyang K, Chen J, Dirksen RT, Cheng H. Superoxide flashes in single mitochondria. Cell. 2008; 134(2): 279-90Google Scholar

  • Babušíková E, Jesenák M, Račay P, Dobrota D, Kaplán P. Oxidative alternations in rat heart homogenate and mitochondria during ageing. Gen Physiol Biophys. 2008; 27(2): 115-20PubMedGoogle Scholar

  • Kaplán P, Tatarková Z, Račay P, Lehotský J, Pavlíková M, Dobrota D. Oxidative modifications of cardiac mitochondria and inhibition of cytochrome c oxidase activity by 4-hydroxynonenal. Redox Rep. 2007; 12(5): 211-8PubMedCrossrefGoogle Scholar

  • Long J, Wang X, Gao H, Liu Z, Liu C, Miao M, Liu J. Malonaldehyde acts as a mitochondrial toxin: Inhibitory effects on respiratory function and enzyme activities in isolated rat liver mitochondria. Life Sci. 2006; 79(15): 1466-7CrossrefPubMedGoogle Scholar

  • Kumaran S, Subathra M, Balu M, Panneerselvam C. Age-associated decreased activities of mitochondrial electron transport chain complexes in heart and skeletal muscle: role of L-carnitine. Chem Biol Interact. 2004; 148(1-2): 11-8Google Scholar

  • Tatarková Z, Kuka S, Račay P, Lehotský J, Dobrota D, Mištuna D, Kaplán P. Effects of aging on activities of mitochondrial electron transport chain complexes and oxidative damage in rat heart. Physiol Res. 2011; 60(2): 281-9PubMedGoogle Scholar

  • Davies SM, Poljak A, Duncan MW, Smythe GA, Murphy MP. Measurements of protein carbonyls, orthoand meta-tyrosine and oxidative phosphorylation complex activity in mitochondria from young and old rats. Free Radic Biol Med. 2001; 31(2): 181-90Google Scholar

  • Preston CC, Oberlin AS, Holmuhamedov EL, Gupta A, Sagar S, Syed RH, Siddiqui SA, Raghavakaimal S, Terzic A, Jahangir A. Aging-induced alterations in gene transcripts and functional activity of mitochondrial oxidative phosphorylation complexes in the heart. Mech Ageing Dev. 2008; 129(6): 304-12Google Scholar

  • Choksi KB, Papaconstantinou J. Age-related alterations in oxidatively damaged proteins of mouse heart mitochondrial electron transport chain complexes. Free Radic Biol Med. 2008; 44(10): 1795-805Google Scholar

  • Petrosillo G, Matera M, Moro N, Ruggerio FM, Paradies G. Mitochondrial complex I dysfunction in rat heart with aging: critical role of reactive oxygen species and cardiolipin. Free Radic Biol Med. 2009; 46(1): 88-94Google Scholar

  • Gómez LA, Monette JS, Chavez JD, Maier CS, Hagen TM. Supercomplexes of the mitochondrial electron transport chain decline in the aging rat heart. Arch Biochem Biophys. 2009; 490: 30-35Google Scholar

  • Stadtman ER. Role of oxidant species in aging. Curr Med Chem. 2004; 11(9): 1105-12PubMedCrossrefGoogle Scholar

  • Lee S, Park Y, Zuidema MY, Hannink M, Zhang C. Effects of interventions on oxidative stress and inflammation of cardiovascular diseases. World J Cardiol. 2011; 3(1): 18-24CrossrefPubMedGoogle Scholar

  • Singh M, Nam DT, Arsenault M, Ramassamy C. Role of by-products of lipid oxidation in Alzheimer's disease brain: a focus on acrolein. J Alzheimers Dis. 2010; 21(3): 741-56Google Scholar

  • Fernández-Checa JC, Fernández A, Morales A, Marí M, García-Ruiz C, Colell A. Oxidative stress and altered mitochondrial function in neurodegenerative diseases: lessons from mouse models. CNS Neurol Disord Drug Targets. 2010; 9(4): 439-54Google Scholar

  • Palardó FV, Lloret A, Lebel M, d Ischia M, Cogger VC, Le Couteur DG, Gadaleta MN, Castello G, Pagano G. Mitochondrial dysfunction in some oxidative stress-related genetic diseases: Ataxia-Telangiectasia, Down Syndrome, Fanconi Anaemia and Werner Syndrome. Biogerontology. 2010; 11(4): 401-19CrossrefGoogle Scholar

  • Shoham A, Hadziahmetovic M, Dunaief JL, Mydlarski MB, Schipper HM. Oxidative stress in diseases of human cornea. Free Radic Biol Med. 2008; 45(8): 1047-55Google Scholar

  • Moustafa AH, Ali M, Mohamed TM, Abdou HI. Oxidative stress and thyroid hormones in patients with liver diseases. Eur J Intern Med. 2009; 20(7): 703-8CrossrefPubMedGoogle Scholar

  • Giustarini D, Dalle-Donne I, Tsikas D, Rossi R. Oxidative stress and human diseases: Origin, link, measurement, mechanisms, and biomarkers. Crit Rev Clin Lab Sci. 2009; 46(5-6): 241-81PubMedCrossrefGoogle Scholar

  • Ciechanover A. The ubiquitin proteolytic system: from an idea to the patient bed. Proc Am Thorac Soc. 2006; 3(1): 21-31PubMedCrossrefGoogle Scholar

  • Farout L, Friguet B. Proteasome Function in Aging and Oxidative Stress: Implications in Protein Maintenance Failure. Antioxid Redox Signal. 2006; 8(1-2): 205-16PubMedGoogle Scholar

  • Jung T, Bader N, Grune T. Lipofuscin: formation, distribution, and metabolic consequences. Ann N Y Acad Sci. 2007; 1119: 97-111Google Scholar

  • Semba RD, Nicklett EJ, Ferrucci L. Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010; 65(9): 963-75CrossrefPubMedGoogle Scholar

  • Savitha S, Panneerselvam C. Mitochondrial membrane damage during aging process in rat heart: potential efficacy of L-carnitine and DL alpha lipoic acid. Mech. Ageing Dev. 2006; 27(4): 349-55CrossrefGoogle Scholar

  • Savitha S, Panneerselvam C. Mitigation of age-dependent oxidative damage to DNA in rat heart by carnitine and lipoic acid. Mech Ageing Dev. 2007; 128(2): 206-12Google Scholar

  • Tamilselvan J, Jayaraman G, Sivarajan K, Panneerselvam C. Age-dependent upregulation of p53 and cytochrome c release and susceptibility to apoptosis in skeletal muscle fiber of aged rats: role of carnitine and lipoic acid. Free Radic Biol Med. 2007; 43(12): 1656-69Google Scholar

  • Sudheesh NP, Ajith TA, Janardhanan KK, Krishnan CV. Palladium alpha-lipoic acid complex formulation enhances activities of Krebs cycle dehydrogenases and respiratory complexes I-IV in the heart of aged rats. Food Chem Toxicol. 2009; 47(8): 2124-8CrossrefPubMedGoogle Scholar

  • Salmon AB, Richardson A, Pérez VI. Update on the oxidative stress theory of aging: Does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med. 2010; 48(5): 642-55Google Scholar

  • Judge S, Jang YM, Smith A, Selman C, Phillips T, Speakman JR, Hagen T, Leeuwenburgh C. Exercise by lifelong voluntary wheel running reduces subsarcolemmal and interfibrillar mitochondrial hydrogen peroxide production in the rat heart. Am J Physiol Regul Integr Comp Physiol. 2005; 289(6): R1564-72Google Scholar

  • Navarro A, Gomez C, López-Cepero JM, Boveris A. Beneficial effects of moderate exercise on mice aging: survival, behavior, oxidative stress, and mitochondrial electron transfer. Am J Physiol Regul Integr Comp Physiol. 2004; 286(3): R505-11Google Scholar

  • Ascensão A, Ferreira R, Magalhães J. Exercise-induced cardioprotection - biochemical, morphological and functional evidence in whole tissue and isolated mitochondria. Int J Cardiol. 2007; 117(1): 16-30PubMedCrossrefGoogle Scholar

  • Sinclair DA. Toward a theory of caloric restriction and longevity regulation. Mech Ageing Dev. 2005; 126: 987-1002Google Scholar

  • Li Y, Daniel M, Tollefsbol T. Epigenetic regulation of caloric restriction in aging. BMC Med. 2011; 9(1): 98 [Epub ahead of print]CrossrefGoogle Scholar

  • Wakeling LA, Ions LJ, Ford D. Could Sirt1-mediated epigenetic effects contribute to the longevity response to dietary restriction and be mimicked by other dietary interventions? Age (Dordr). 2009; 31(4):327-41CrossrefGoogle Scholar

About the article

Published Online: 2012-09-11

Published in Print: 2012-03-01

Citation Information: Acta Medica Martiniana, Volume 12, Issue 1, Pages 5–11, ISSN (Print) 1335-8421, DOI: https://doi.org/10.2478/v10201-011-0027-3.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Veronika Holzer, Agnieszka Lower-Nedza, Myagmar Nandintsetseg, Javzan Batkhuu, and Adelheid Brantner
Antioxidants, 2013, Volume 2, Number 4, Page 265

Comments (0)

Please log in or register to comment.
Log in