Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Medica Martiniana

The Journal of Comenius University in Bratislava

3 Issues per year

Open Access
Online
ISSN
1335-8421
See all formats and pricing
More options …

Heart Rate Variability and Electrodermal Activity as Noninvasive Indices of Sympathovagal Balance in Response to Stress

Ing. Zuzana Visnovcova / A. Calkovska
  • Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ I. Tonhajzerova
  • Department of Physiology, Jessenius Faculty of Medicine, Comenius University, Martin, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-05-14 | DOI: https://doi.org/10.2478/acm-2013-0006

Abstract

The autonomic nervous system (ANS) is a principal regulatory system for maintaining homeostasis, adaptability and physiological flexibility of the organism at rest as well as in response to stress. In the aspect of autonomic regulatory inputs on the cardiovascular system, recent research is focused on the study of exaggerated/diminished cardiovascular reactivity in response to mental stress as a risk factor for health complications, e.g. hypertension. Thus, the analysis of biological signals reflecting a physiological shift in sympathovagal balance during stress in the manner of vagal withdrawal associated with sympathetic overactivity is important. The heart rate variability, i.e. “beat-to-beat” oscillations of heart rate around its mean value, reflects mainly complex neurocardiac parasympathetic control. The electrodermal activity could represent “antagonistic” sympathetic activity, the so-called “sympathetic arousal” in response to stress. The detailed study of the physiological parameters under various stressful stimuli and in recovery phase using traditional and novel mathematical analyses could reveal discrete alterations in sympathovagal balance. This article summarizes the importance of heart rate variability and electrodermal activity assessment as the potential noninvasive indices indicating autonomic nervous system activity in response to mental stress.

Keywords : cardiovascular system; electrodermal response; heart rate variability; mental load

  • 1. Fontes MAP, Xavier CH, de Menezes RCA, DiMicco JA. The dorsomedial hypothalamus and the central pathways involved in the cardiovascular response to emotional stress. J Neurosci 2011; 184: 64-74.Google Scholar

  • 2. McEwen BS, Wingfield JC. The concept of allostasis in biology and biomedicine. Horm Behav 2003; 43: 2-15.CrossrefPubMedGoogle Scholar

  • 3. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Circulation 1996; 93: 1043-1065.PubMedGoogle Scholar

  • 4. Lloyd-Jones DM, Walsh JA, Prineas RJ, Ning H, Liu K, Daviglus ML, Shea S, Detrano RC, Tandri H, Greenland P. Association of Electrocardiographic Abnormalities With Coronary Artery Calcium and Carotid Artery Intima-Media Thickness in Individuals Without Clinical Coronary Heart Disease (from the Multi-Ethnic Study of Atherosclerosis [MESA]). Am J Cardiol 2009; 104(8): 1086-1091.CrossrefGoogle Scholar

  • 5. Smith PA, Graham LN, Mackintosh AF, Stoker JB, Mary DASG. Relationship between central sympathetic activity and stages of human hypertension. Am J Hypertens 2004; 17(3): 217-222.PubMedCrossrefGoogle Scholar

  • 6. Lovallo WR, Gerin W. Psychophysiological reactivity: mechanisms and pathways to cardiovascular disease. Psychosom Med 2003; 65: 36-45.PubMedCrossrefGoogle Scholar

  • 7. Lovallo WR. Do low levels of stress reactivity signal poor states of health? Biol Psychol 2011; 86(2): 121-128.CrossrefPubMedGoogle Scholar

  • 8. Voss A, Schulz S, Schroeder R, Baumert M, Caminal, P. Methods derived from nonlinear dynamics for analyzing heart rate variability. Philos T Roy Soc A 2009; 367(1887): 277-296.Google Scholar

  • 9. Thayer JF, Lane RD. A model of neurovisceral in emotion regulation and dysregulation. J Affect Disorders 2000; 61(3): 201-216.CrossrefGoogle Scholar

  • 10. Thayer JF, Lane RD. Claude Bernard and the heart-brain connection: futher elaboration of model of neurovisceral integration. Neurosci Biobehav Rev 2009; 33(2): 81-88.CrossrefGoogle Scholar

  • 11. Benarroch EE. The central autonomic network: Functional organization, dysfunction and perspective. Mayo Clin Proc 1993; 68: 988-1001.PubMedCrossrefGoogle Scholar

  • 12. Cutshall SM, Wentworth LJ, Wahner-Roedler DI, Vincent A, Schmidt JE, Loehrer LL, Cha SS, Bauer BA. Evaluation of a biofeedback-assisted mediation program as a stress management tool for hospital nursers: a pilot study. Explore (NY) 2011; 7: 110-112.Google Scholar

  • 13. Porges SW. Orienting in a defensive world: Mammalian modification of our evolutionary heritage. A polyvagal theory. Psychophysiology 1995; 32: 301-318.CrossrefGoogle Scholar

  • 14. Porges SW. The polyvagal theory: new insights into adaptive reactions of the autonomic nervous system. Cleve Clin J Med 2009; 76(2): 86-90.CrossrefGoogle Scholar

  • 15. Lane RD, McRae K, Reiman EM, Chen K, Ahern GL, Thayer JF. Neural correlates of heart rate variability during emotion. NeuroImage 2009; 44(1): 213-222.PubMedCrossrefGoogle Scholar

  • 16. Ahs F, Sollers IIIJJ, Furmark T, Fredrikson M, Thayer JF. High-frequency heart rate variability and corticostriatal activity in men and women with social phobia. Neuroimage 2009; 47: 815-820.CrossrefGoogle Scholar

  • 17. Thayer JF, Ahs F, Fredrikson M, Sollers IIIJJ, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: Implications for heart rate variability as a marker of stress and health. Neurosci Biobehav R 2012; 36(2): 747-756.CrossrefGoogle Scholar

  • 18. Javorka K. Lekarska fyziologia. Martin: Osveta; 2009. 742.Google Scholar

  • 19. Porta A, D`addio G, Bassani T, Maestri R, Pinna GD. Assesment of cardiovascular regulation through irreversibility analysis of heart period variability: a 24 hours Holter study in healthy and chronic heart failure populations. Philos T Roy Soc A 2009; 367(1892): 1359-1375.Google Scholar

  • 20. Guzzetti S, La Rovere MT, Pinna GD. Different Spectral Components of 24-Hours Heart Rate Variability and Related to Different Modes of Death in Chronic Heart Failure. ACC Curr J Rev 2005; 14(6): 32.Google Scholar

  • 21. Porta A, Guzzetti S, Montano N, Gnecchi-Ruscone T, Furlan R, Malliani A. Time reversibility in short-term heart period variability. Comput Cardiol 2006; 33: 77-80.Google Scholar

  • 22. Javorka M, Tonhajzerova I, Turianikova Z, Chladekova L, Javorka K, Calkovska A. Quantification of nonlinear features in cardiovascular signals. AMM 2011; suppl 1: 31-40.Google Scholar

  • 23. Porta A, Casali KR, Casali AG, Gnecchi-Ruscone T, Tobaldini E, Montano N, Lange S, Geue D, Cysarz D, Van Leeuwen P. Temporal asymmetries of short-term heart period variability are linked to autonomic regulation. Am J Physiol Regul Integr Comp Physiol 2008; 295(2): R550-R557.Google Scholar

  • 24. Guzik P, Piskorski J, Krauze T, Wykretowicz A, Wysocki H. Heart rate asymmetry by Poincaré plots of RR intervals. Biomedizinische Technik 2006; 51(4): 272-275.CrossrefGoogle Scholar

  • 25. Costa MD, Peng CK, Goldberger AL. Multiscale analysis of heart rate dynamics: entropy and time irreversibility measures. Cardiovasc Eng 2008; 8(2): 88-93.CrossrefPubMedGoogle Scholar

  • 26. Cannon WB. Stresses and strains of homeostasis. Am J Med Sci 1935; 189: 1-14.Google Scholar

  • 27. Berntson GG, Cacioppo JT. Heart rate variability: Stress and psychiatric conditions. Camm AJ, Malik M. Dynamic electrocardiography. New York: Futura 2004; 56-63.Google Scholar

  • 28. McEwen BS. Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 2007; 87(3): 873-904.PubMedCrossrefGoogle Scholar

  • 29. Chida Y, Steptoe A. Stress Reactivity and Its Association With Increased Cardiovascular Risk: A Role for the Sympathetic Nervous System? Hypertension 2010; 55(10): 26-33.Google Scholar

  • 30. Dawson ME, Schell AM, Filion DL. The electrodermal system. Cacioppo JT, Tassinary LG, Berntson GG. Handbook of psychophysiology. Cambridge UK: CUP 2007; 159-181.Google Scholar

  • 31. Kobayashi N, Yoshino A, Takahashi Y, Nomura S. Autonomic arousal in cognitive conflict resolution. Autonomic Neuroscience 2007; 132(1-2): 70-75.Google Scholar

  • 35. Tarchanoff J. Décharges électriques dans la peau de l homme sous l influence de l excitation des organs des sens et de différentes forms d activité psychique. C R Soc Biol (Paris) 1889; 41: 447-451.Google Scholar

  • 35. Edelberg R. Electrodermal mechanisms: A critique of the two-effector hypothesis and a proposed replacement. Roy. Progress in electrodermal research. New York: Plenum Press 1993; 7-29.Google Scholar

  • 34. Murphy RO. Using skin conductance in judgment and decision making research. Schutle-Mecklenbeck M, Kuehberger A, Ranyard R. A handbook of process tracing methods for decision research. New York, NY: Psychology Press 2010; 1-33.Google Scholar

  • 35. Sokolov EN. Perception and the conditioned reflex. Oxford: Pergamon Press 1993;Google Scholar

  • 36. Humphreys LG. Measured of strength of conditioned eyelid responses. J Gen Physiol 1943; 29: 101-111.Google Scholar

  • 37. Boucsein W. Electrodermal activity. Springer New York; 2011, 1-86.Google Scholar

  • 38. Folkow B. Perspectives on the integrative functions of the sympatho-adrenomedullary system . Autonomic Neuroscience 2000; 83(3): 101-115.CrossrefGoogle Scholar

  • 39. Kreibig SD. Autonomic nervous system activity in emotion: A review. Biolog Psychol 2010; 84(3): 394-421.CrossrefGoogle Scholar

  • 40. Oldehinkel AJ, Verhulst FC, Ormel J. Low heart rate: a marker of stress resilience. The TRIALS study. Biol Psychiatry 2008; 63(12): 1141-1146.CrossrefGoogle Scholar

  • 41. Tonhajzerova I, Javorka K, Petrášková M. Zmeny variability frekvencie srdca (VFS) pri mentálnej záťaži. 4esslov Pediat 2000; 55: 562-567.Google Scholar

  • 42. Dimsdale JE. Psychological Stress and Cardiovascular Disease. J A Coll Cardiol 2008; 51(13): 1237-1246.CrossrefGoogle Scholar

  • 43. Vuksanovic V, Gal V. Heart rate variability in mental stress aloud. Med Eng Phys 2007; 29(3): 344-349.PubMedCrossrefGoogle Scholar

  • 44. Richman J, Moorman JR. Physiological time-series analysis using approximate entropy and sample entropy.PubMedGoogle Scholar

  • Am J Physiol: Heart and Ciculatory Physiology 2000; 278(6): 2039-2049.Google Scholar

  • 45. Porta A, Guzzetti S, Montano N, Furlan R, Pagani M, Malliani A, Cerutti S. Entropy, entropy rate and pattern classification as tools to typify complexity in short heart period variability series. IEE Trans Biomed Eng 2001; 48: 1282-1291.CrossrefGoogle Scholar

  • 46. Porta A, Faes L, Masé M, D Addio G, Pinna GD, Maestri R, Montano N, Furlan R, Guzzetti S, Nollo G, Malliani A. An integrated approach based on uniform quantization for the evaluation of complexity of short-term heart rate period variability: Application to 24 h Holter recordings in healthy and heart failure humans. Chaos 2007; 17: 015117-1 - 015117-11.CrossrefGoogle Scholar

  • 47. Hou F, Zhuang J, Bian Ch, Tong T, Chen Y, Yin J, Qiu X, Ning X. Analysis of heartbeat asymmetry based on multi-scale time irreversibility test. Physica A: Statistical Mechanics and its Applications 2010; 389(4): 754-760.Google Scholar

  • 48. Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation 1991; 84: 482-492.PubMedCrossrefGoogle Scholar

  • 49. Sloan RP, Shapiro PA, Bagiella E, Bigger JT, Lo ES, Gorman JM. Relationship Between Circulating Catecholamines and Low Frequency Heart Period Variability as Indices of Cardiac Sympathetic Activity During Mental Stress. Psychosom Med 1996; 58: 25-31.PubMedGoogle Scholar

  • 50. Tonhajzerova I. Mentálna aktivita a variabilita frekvencie srdca. In Javorka et al.: Variabilita frekvencie srdca - mechanizmy, hodnotenie, klinické využitie. Osveta 2008; 96-100.Google Scholar

  • 51. Guasti L, Simoni C, Mainardi L, Crepsi Ch, Cimpanelli MG, Klersy C, Gaudio G, Codari R, Maroni L, Marino F, Cosentino M, Grandi AM, Cerutti S, Venco A. Lack of relationship between cardiovascular reactivity to mental stress and autonomic modulation of the sinoatrial node in normotensive and hypertensive male subjects. Int J Psychophysiol 2009; 71(3): 258-263.CrossrefGoogle Scholar

  • 55. Visnovcova Z, Mestanik M, Chladekova L, Kotianova A, Slepecky M, Calkovska A, Tonhajzerova I. Zmeny elektrodermálnej activity v odpovedi na stress. Novinky v experimentálnej a klinickej medicine - recenzovaný zborník vedeckých prác, Martin - Jesseniova Lekárska fakulta UK 2012; 198-202.Google Scholar

  • 53. Henry BL, Minassian A, Paulus MP, Geyer MA, Perry W. Heart rate variability in bipolar mania and schizophrenia. J Psychiat Res 2010; 44(3): 168-176.CrossrefGoogle Scholar

  • 54. Berntson GG, Cacioppo JT. Heart rate variability: A neuroscientific perspective for further studies. Cardiac Electrophysiology Review 2007; 3: 279-282. Google Scholar

About the article

Published Online: 2013-05-14

Published in Print: 2013-03-01


Citation Information: Acta Medica Martiniana, Volume 13, Issue 1, Pages 5–13, ISSN (Print) 1335-8421, DOI: https://doi.org/10.2478/acm-2013-0006.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in