Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Palaeobotanica

The Journal of W. Szafer Institute of Botany of Polish Academy of Sciences

2 Issues per year

CiteScore 2016: 1.17

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 0.513

Open Access
See all formats and pricing
More options …

Limnological record inferred from diatoms in sediments of Lake Skaliska (north-eastern Poland)

Elwira Sienkiewicz
  • Corresponding author
  • Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Warsaw, Twarda 51/55, 00-818 Warszawa, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-06-26 | DOI: https://doi.org/10.2478/acpa-2013-0007


Subfossil diatoms analysis was employed to reconstruct past environmental changes in Lake Skaliska. This lake, presently a palaeolake, is located on a wide plain called the Skaliska Basin (northern part of Mazury Lake District, north-eastern Poland). Changes in terrestrial vegetation suggest that the initial phase of the lake was in the early Holocene. In the sediments a total of 176 diatom species belonging to 35 genera were identified. The majority of diatoms are alkaliphilous and alkalibiontic, occurring mainly in meso-eutrophic water. Diatom flora development suggests that the best conditions for diatom growth prevailed throughout the Boreal and in the early Atlantic, a suggestion supported by the increased frequency of planktonic diatoms living in nutrient-rich water. A water pH reconstruction (DIpH) based on diatoms points to alkalinity during the lake’s existence. Since roughly the mid-Atlantic the lake was shallowing, and at the beginning of the Subboreal peat sedimentation led to complete overgrowth of the lake.

KEYWORDS: diatoms; trophy; water level; palaeolake; north-eastern Poland

  • BATTARBEE R.W. 1986. Diatom analysis: 527-570. In: Berglund B.E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. John Willey and Sons, Chichester, New York.Google Scholar

  • BIRKS H.J.B., MONTEITH D.T., ROSE N.L., JONES V.J. & PEGLAR S.M. 2004. Recent environmental change and atmospheric contamination on Svalbard - a palaeolimnological study. J. Paleolimnol., 31: 411-431.CrossrefGoogle Scholar

  • BENNION H., FLUIN J. & SIMSON G.L. 2004. Assessing eutrophication and reference conditions for Scottish freshwater lochs using subfossil diatoms. J. Appl. Ecol., 41(1): 124-138.Google Scholar

  • ter BRAAK C.J.F. & BARENDREGT L.G. 1986. Weighted averaging of species indicator values: its efficiency in environmental calibration. Math. Bio- Sci., 78: 57-72.Google Scholar

  • BRONK RAMSEY C. 2009. Bayesian analysis of radiocarbon dates. Radiocarbon, 51(1): 337-360.Google Scholar

  • CATALAN J., BALLESTEROS E., GACIA E., PALAU A. & CAMARERO L. 1993. Chemical composition of disturbed and undisturbed high-mountain lakes in the Pyrenees: a reference for acidified sites. Wat. Res., 27: 133-141.Google Scholar

  • CREMER H. & WAGNER B. 2003. The diatom flora in the ultra-oligotrophic Lake El’gygytgyn, Chukotka. Polar Biol., 26(2): 105-114.Google Scholar

  • GĄSIOROWSKI M. 2013. Cladocera record from Budzewo (Skaliska Basin, north-eastern Poland). Acta Palaeobot., 53(1): 93-97.Google Scholar

  • GURBUZ H., KIVRAK E., SOYUPAK S. & YERLI S.V. 2003. Predicting dominant phytoplankton quantities in a reservoir by using neural networks. Hydrobiologia, 504(1-3): 133-141.Google Scholar

  • KHURSEVICH G.K., NITA M., BER A., SANKO A. & FEDENYA S. 2005. Paleoenvironmental and climatic changes during the early Pleistocene recorded in the lacustrine-boggy-fluvial sediments at Komorniki, NE Poland. Państw. Geol. Inst. Special Pap., 16: 35-44.Google Scholar

  • KOŁACZEK P., KUPRYJANOWICZ M., KARPIŃ- SKA-KOŁACZEK M., WINTER H., SZAL M., DANEL W., POCHOCKA-SZWARC K. & STACHOWICZ- RYBKA R. 2013. The Late Glacial and Holocene development of vegetation in the area of fossil lake in the Skaliska Basin (north-eastern Poland) inferred from pollen analysis and radiocarbon datings. Acta Palaeobot., 53(1): 23-52.Google Scholar

  • KRAMMER K. & LANGE-BERTALOT H. 1986. Suswasserflora von Mitteleuropa Bacillariophyceae. I. Teil: Naviculaceae. Gustav Fisher Verlag, Stuttgart.Google Scholar

  • KRAMMER K. & LANGE-BERTALOT H. 1988. Suswasserflora von Mitteleuropa Bacillariophyceae. 2. Teil: Bacillariaceae, Epithemiaceae, Surirellaceae. Gustav Fisher Verlag, Stuttgart.Google Scholar

  • KRAMMER K. & LANGE-BERTALOT H. 1991a. Suswasserflora von Mitteleuropa Bacillariophyceae. 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. Gustav Fisher Verlag, Stuttgart.Google Scholar

  • KRAMMER K. & LANGE-BERTALOT H. 1991b. Suswasserflora von Mitteleuropa Bacillariophyceae. 4. Teil: Achnanthaceae, Kritische Ergazungen zu Navicula (Lineolatae) und Gomphonema Gesamtliteraturverzeichnis Teil 1-4. Gustav Fisher Verlag, Stuttgart.Google Scholar

  • LANGE-BERTALOT H. & METZELTIN D. 1996. Ecology - Diversity - Taxonomy. Indicators of oligotrophy - 800 taxa representative of three ecologically distinct lake types. In: Lange-Bertalot H. (ed.), Iconographia Diatomologica 2. Koeltz Scientific Books, Koenigstein.Google Scholar

  • LARSEN J. 2000. Recent changes in diatom-inferred pH, heavy metals, and spheroidal carbonaceous particles in lake sediments near an oil refinery at Mongstad, Western Norway. J. Paleolimnol., 23: 343-363.CrossrefGoogle Scholar

  • LARSEN J., BJUNE A.E. & de la RIVA CABALLERO A. 2006. Holocene environmental and climate history of Trettetjřrn, a low-alpine lake in western Norway, based on subfossil pollen, diatoms, oribatid mites, and plant macrofossils. Arct. Antarct. Alp. Res., 38(4): 571-583.Google Scholar

  • MANOYLOV K.M., OGNJANOVA-RUMENOVA N. & STEVENSON R.J. 2009. Morphotype variations in subfossil diatom species of Aulacoseira in 24 Michigan Lakes, USA. Acta Bot. Croat., 68(2): 401-419.Google Scholar

  • MARCHETTO A. & SCHMIDT R. 1993. A regional calibration data set to infer lake water pH from sediment diatom assemblages in alpine lakes. Mem. Ist. Ital. Idrobiol., 51: 115-125.Google Scholar

  • MARCINIAK B. 1973. Zastosowanie analizy diatomologicznej do stratygrafii poźnoglacjalnych osadow Jeziora Mikołajskiego (summary: The application of the diatomological analysis in the stratigraphy of the Late Glacial deposits of the Mikołajki Lake). Stud. Geol. Pol., 39: 1-159.Google Scholar

  • MIROSŁAW-GRABOWSKA J. 2013. Isotope record of environmental changes at the Skaliska palaeolake during the Late Glacial and Holocene. Acta Palaeobot., 53(1): 105-114.Google Scholar

  • POCHOCKA-SZWARC K. 2005. Zagadka zaniku jeziora skaliskiego w Krainie Wielkich Jezior Mazurskich (Mystery of the ancient Skaliska Lake in the Mazury Lakeland - NE Poland). Prz. Geol., 53: 873-878.Google Scholar

  • REAVIE E.D. & SMOL J.P. 2001. Diatom-environmental relationships in 64 alkaline southeastern Ontario (Canada) lakes: a diatom-based model for water quality reconstructions. J. Paleolimnol., 25(1): 25-42.CrossrefGoogle Scholar

  • SOLOVIEVA N. & JONES V.J. 2002. A multiproxy record of Holocene environmental changes in the central Kola Peninsula, northwest Russia. J. Quatern. Sci., 17(4): 303-318.Google Scholar

  • STACHOWICZ-RYBKA R. & OBIDOWICZ A. 2013. The development and genesis of a small thaw lake filling the Skaliska Basin during the Late Glacial and Holocene. Acta Palaeobot., 53(1): 69-91.Google Scholar

  • WALANUS A. & NALEPKA D. 1999. POLPAL. Program for counting pollen grains, diagrams plotting and numerical analysis. Acta Palaeobot., Suppl., 2: 659-661.Google Scholar

  • WINTER H., KHURSEVICH G. & FEDENYA S. 2008. Pollen and diatom stratigraphy of the lacustrinefluvial-swamp deposits from the profile at Domuraty, NE Poland. Geol. Quart., 52(3): 269-280.Google Scholar

  • WUNSAM S., SCHMIDT R. & KLEE R. 1995. Cyclotella-taxa (Bacillariophyceae) in lakes of the Alpine region and their relationship to environmental variables. Aquatic Sciences, 57(4): 360-386.CrossrefGoogle Scholar

About the article

Published Online: 2013-06-26

Published in Print: 2013-06-01

Citation Information: Acta Palaeobotanica, Volume 53, Issue 1, Pages 99–104, ISSN (Print) 2082-0259, DOI: https://doi.org/10.2478/acpa-2013-0007.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Monika Karpińska-Kołaczek, Renata Stachowicz-Rybka, Andrzej Obidowicz, Michał Woszczyk, and Piotr Kołaczek
Review of Palaeobotany and Palynology, 2016, Volume 233, Page 199
Joanna Mirosław-Grabowska, Edyta Zawisza, Agata Jaskółka, and Milena Obremska
Quaternary International, 2015, Volume 386, Page 171
Piotr Kołaczek, Joanna Mirosław-Grabowska, Monika Karpińska-Kołaczek, and Renata Stachowicz-Rybka
Quaternary International, 2015, Volume 388, Page 51
Gražyna Gryguc, Dalia Kisielienė, Miglė Stančikaitė, Vaida Šeirienė, Žana Skuratovič, Vykintas Vaitkevičius, and Andrejus Gaidamavičius
Baltica, 2013, Volume 26, Number 2, Page 121

Comments (0)

Please log in or register to comment.
Log in