Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Palaeobotanica

The Journal of W. Szafer Institute of Botany of Polish Academy of Sciences

2 Issues per year

CiteScore 2016: 1.17

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 0.513

Open Access
See all formats and pricing
More options …

Epiphyllous fungi from the Oligocene shallowmarine deposits of the Krabbedalen Formation, Kap Brewster, central East Greenland

Grzegorz Worobiec
  • Corresponding author
  • Department of Palaeobotany, Władysław Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elżbieta Worobiec
  • Corresponding author
  • Department of Palaeobotany, Władysław Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, 31-512 Kraków
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-31 | DOI: https://doi.org/10.2478/acpa-2013-0014


Fructifications of epiphyllous fungi were encountered during palynological investigation of the Lower Oligocene shallow-marine deposits of the Krabbedalen Formation at the Savoia Halvø, Kap Brewster, central East Greenland. Six fossil taxa from the family Microthyriaceae (Phragmothyrites kangukensis Kalgutkar, Phragmothyrites sp., Plochmopeltinites sp., Trichothyrites cf. ostiolatus (Cookson) Kalgutkar & Jansonius, Trichothyrites sp. 1, and Trichothyrites sp. 2) and one incertae sedis fungal remain are reported. Fungal remains from the Krabbedalen Formation represent the youngest, Oligocene occurrence of the epiphyllous fungi in the Palaeogene of the Arctic. The presence of epiphyllous, microthyriaceous fungi in low quantities and in low taxonomical diversity points to a humid and not necessarily warm climate, which is corroborated by data obtained from the analysis of microscopic plant remains.

KEYWORDS: Epiphyllous fungi; fructifications; Microthyriaceae; taxonomy; palaeoecology; Oligocene; Arctic; Krabbedalen Formation; Greenland

  • ALT B.T. 1987. Arctic climates: 82-90. In: Oliver J.E. & Fairbridge R.W. (eds), The Encyclopedia of Climatology. Van Nostrand Reinhold New York.Google Scholar

  • BASINGER J.F., GREENWOOD D.R. & SWEDA T. 1994. Early Tertiary vegetation of Arctic Canada and its relevance to paleoclimatic interpretation. In: Boulter M.C. & Fisher H.C. (eds), Cenozoic Plants and Climates of the Arctic. NATO Adv. Sci. Inst. Ser., 127: 175-213.Google Scholar

  • BIRKENMAJER K. 1972. Report on investigations of Tertiary sediments at Kap Brewster, Scoresby Sund, East Greenland. Grønlands Geologiske Undersøgelse, Rapport, 48: 85-91.Google Scholar

  • BIRKENMAJER K. & JEDNOROWSKA A. 1977. Foraminiferal evidence for the East Greenland Current during the Oligocene. Grønlands Geologiske Undersøgelse, Rapport, 85: 86-89.Google Scholar

  • BIRKENMAJER K. & JEDNOROWSKA A. 1997. Early Oligocene foraminifera from Kap Brewster, East Greenland. Ann. Soc. Geol. Pol., 67: 155-173.Google Scholar

  • BIRKENMAJER K., GEDL P. & WOROBIEC E. 2010. Dinoflagellate cyst and spore-pollen spectra from Lower Oligocene Krabbedalen Formation at Kap Brewster, East Greenland. Pol. Polar Res., 31(2): 103-140.Google Scholar

  • BOULTER M.C. & FISHER H.C. (eds) 1994. Cenozoic Plants and Climates of the Arctic. Springer Verlag, Heidelberg.Google Scholar

  • BOULTER M.C. & MANUM S.B. 1996. Oligocene and Miocene vegetation in high latitudes of the north Atlantic: Palynological evidence from the Hovgård Ridge in the Greenland Sea (site 908). In: Thiede J., Myhre A.M., Firth J.V., Johnson G.L. & Ruddiman W.F. (eds), Proc. of the Ocean Drilling Program, Scientific Results, 151: 289-296.Google Scholar

  • COOKSON I.C. 1947. Fossil fungi from Tertiary deposits in the Southern Hemisphere, Part I. Proc. Linn. Soc. N.S.W., 72: 207-214.Google Scholar

  • DENNIS R.W.G. 1968. Fungi from South Georgia. Kew Bull., 22(3): 445-448.Google Scholar

  • DILCHER D.L. 1965. Epiphyllous fungi from Eocene deposits in western Tennessee, USA. Palaeontographica, B, 116(1-4): 1-54.Google Scholar

  • ELSIK W.C. 1978. Classification and geologic history of the microthyriaceous fungi. In: Proc. of the IV International Palynological Conference, Lucknow (1976-77), 1: 331-342.Google Scholar

  • ERIKSSON B. 1974. On ascomycetes on Diapensiales and Ericales in Fennoscandia. 2. Pyrenomycetes. Sven. Bot. Tidskr., 68: 192-234.Google Scholar

  • FLESSA F., PERŠOH D. & RAMBOLD G. 2012. Annuality of Central European deciduous tree leaves delimits community development of epifoliar pigmented fungi. Fungal Ecol., 5(5): 554-561.CrossrefGoogle Scholar

  • GARCÍA MASSINI J.L., ZAMALOA M.D.C., & ROMERO E.J. 2004. Fungal fruiting bodies in the Cullen Formation (Miocene) in Tierra del fuego, Argentina. Ameghiniana, 41(1): 83-90. van GEEL B. 1978. A palaeoecological study of Holocene peat bog sections in Germany and the Netherlands, based on the analysis of pollen, spores and macro-and microscopic remains of fungi, algae, cormophytes and animals. Rev. Palaeobot. Palynol., 25(1): 1-120.Google Scholar

  • HANSEN J.M. 1980. Morphological characterization of encrusting, palynomorph green algae from the Cretaceous-Tertiary of central West Greenland and Denmark. Grana, 19(1): 67-77.CrossrefGoogle Scholar

  • HASSAN M.Y. 1953. Tertiary faunas from Kap Brewster, East Greenland. Medd. Grønl., 111(5): 1-42.Google Scholar

  • HEAD M.J., NORRIS G. & MUDIE P.J. 1989. Palynology and dinocyst stratigraphy of the Miocene in ODP Leg 105, Hole 645E, Baffin Bay. In: Srivastava S.P., Arthur M., Clement B., et al. (eds), Proc. of the Ocean Drilling Program, Scientific Results, 105: 467-514.Google Scholar

  • HOFMANN T.A. 2010. Plant parasitic Asterinaceae and Microthyriaceae from the Neotropics (Panama). PhD thesis. The faculty of biological sciences at the JW Goethe-University, Frankfurt am Main, Germany.Google Scholar

  • HOLM K. & HOLM L. 1984. A contribution to the mycoflora of Iceland. Acta Bot. Isl., 7: 3-11.Google Scholar

  • JANSONIUS J. 1976. Palaeogene fungal spores and fruiting bodies of the Canadian Arctic. Geoscience and Man, 15(1): 129-132.Google Scholar

  • JOHNSON E.M. & SUTTON T.B. 2000. Response of two fungi in the apple sooty blotch complex to temperature and relative humidity. Phytopathology, 90(4): 362-367.CrossrefPubMedGoogle Scholar

  • KALGUTKAR R.M. 1985. Fossil fungal fructifications from Bonnet Plume Formation, Yukon Territory. Curt. Res. B, Geol. Surv. Can. Pap., 85-1B: 259-268.Google Scholar

  • KALGUTKAR R.M. 1993. Paleogene fungal palynomorphs from Bonnet Plume Formation, Yukon Territory. Contrib. Can. Paleontol., Geol. Surv. Can. Bull., 444: 51-105.Google Scholar

  • KALGUTKAR R.M. 1995. An overview of fossil fungal assemblage from the Iceberg Bay Formation, Eureka Sound Group, at Kanguk Peninsula, Axel Heiberg Island, Northwest Territories. Proc. of the Oil and Gas Forum ‘95 Energy from Sediments. Geol. Surv. Can. Open File, 3058: 205-209.Google Scholar

  • KALGUTKAR R.M. 1997. Fossil fungi from the lower Tertiary Iceberg Bay Formation, Eukeka Sound Group, Axel Heiberg Island, Northwest Territories, Canada. Rev. Palaeobot. Palynol., 97(1): 197-226.Google Scholar

  • KALGUTKAR R.M. 1999. Paleogene fungal spores and fructifications from the Amphitheatre Formation, Yukon Territories, Canada. In: Abstracts of the proceedings of the thirty-first annual meeting of the American association of stratigraphic palynologists, Ensenada, Baja California, Mexico, 27-31 October 1998. Palynology, 23(1): 247-269.Google Scholar

  • KALGUTKAR R.M. & JANSONIUS J. 2000. Synopsis of fossil fungal spores, mycelia and fructifications. Am. Assoc. Strat. Palynol. Contrib. Ser., 39: 1-429.Google Scholar

  • KAR R.K. & SAXENA R.K. 1976. Algal and fungal microfossils from Matanomadh Formation (Paleocene) Kutch, India. Palaeobotanist, 23: 1-15. KIRK P.M. & SPOONER B.M. 1989. Ascomycetes on leaf litter of Laurus nobilis and Hedera helix. Mycol. Res., 92(3): 335-346.Google Scholar

  • KORF R.P. 1958. Japanese Discomycete Notes I--VIII. Sci. Rep. Yokohama Nat. Univ., Sec. 2, Biol. Sci. 7: 7-35.Google Scholar

  • KUMAR S., SINGH R., GOND D.K., SAINI D.C. & KAMAL. 2011. Indian Forests: A Natural Paradise for Biodiversity of Foliar Fungi. In: National Conference on Forest Biodiversity: Earth’s Living Treasure, 22 May 2011: 134-140.Google Scholar

  • LANGE R.T. 1976. Fossil epiphyllous “germlings”, their living equivalents and their palaeohabitat indicator value. Neues Jahrb. Geol. Palaeontol. Abh., 151: 142-165.Google Scholar

  • LEE D.E., CONRAN J.G., LINDQVIST J.K., BANNISTER J.M., & MILDENHALL D.C. 2012. New Zealand Eocene, Oligocene and Miocene macrofossil and pollen records and modern plant distributions in the southern hemisphere. Bot. Rev., 78(3): 235-260.Google Scholar

  • LIMAYE R.B., KUMARAN K.P.N., NAIR K.M., & PADMALAL D. 2007. Non-pollen palynomorphs as potential palaeoenvironmental indicators in the Late Quaternary sediments of the west coast of India. Curr. Sci., 92(10): 1370-1382.Google Scholar

  • LIND J.V.A. 1928. The micromycetes of Svalbard. Skr. Svalbard Ishavet, 13: 1-61.Google Scholar

  • LYCK J.M. & STEMMERIK L. 2000. Palynology and depositional history of the Paleocene? Thyra Ø Formation, Wandel Sea Basin, eastern North Greenland. Geol. Greenl. Surv. Bull., 187: 21-49.Google Scholar

  • MANUM S. 1962. Studies in the Tertiary flora of Spitsbergen, with notes on Tertiary floras of Ellesmere Island, Greenland, and Iceland. A palynological investigation. Norsk Polarinst. Skr., 125: 1-127.Google Scholar

  • McINTYRE D.J. 1991. Palynology (Appendix 3). In: Ricketts B.D. (ed.), Delta Evolution in the Eureka Sound Group, western Axel Heiberg Island: the Transition from Wave-dominated to Fluvial-dominated Deltas. Geol. Surv. Can. Bull., 402: 66-72.Google Scholar

  • MIOLA A. 2012. Tools for Non-Pollen Palynomorphs (NPPs) analysis: A list of Quaternary NPP types and reference literature in English language (1972-2011). Rev. Palaeobot. Palynol., 186: 142-161.Google Scholar

  • PARSONS M.G. 2000. Palynology of Paleogene strata in the Caribou Hills, Beaufort-MacKenzie Basin, northern Canada. PhD Thesis. Department of Geology, University of Toronto, Canada.Google Scholar

  • PETRAK F. 1947 Ronnigeria, n.gen., eine neue Gattung der Leptopeltineen. Sydowia, 1(4-6): 309-312.Google Scholar

  • PIEPENBRING M., HOFMANN T.A., KIRSCHNER R., MANGELSDORFF R., PERDOMO O., RODRÍGUEZ JUSTAVINO D., & TRAMPE T. 2011. Diversity patterns of Neotropical plant parasitic microfungi. Ecotropica, 17: 27-40.Google Scholar

  • RAO K.P. & RAMANUJAM C.G.K. 1976. A further record of microthyriaceous fungi from the Neogene deposits of Kerala in South India. Geophytology, 6(1): 96-104.Google Scholar

  • RAO M.R., SAHNI A., RANA R.S. & VERMA P. 2013. Palynostratigraphy and depositional environment of Vastan Lignite Mine (Early Eocene), Gujarat, western India. J. Earth Syst. Sci., 122(2): 289-307.Google Scholar

  • REYNOLDS D.R. & GILBERT G.S. 2005. Epifoliar fungi from Queensland, Australia. Aust. Syst. Bot., 18(3): 265-289.Google Scholar

  • SAXENA R.K. & KHARE S. 1992. Fungal remains from the Neyveli Formation of Tiruchirapalli District, Tamil Nadu, India. Geophytology, 21: 37-43.Google Scholar

  • SCHMIEDEKNECHT M. 1995. Environmental tolerance range of Meliolales as mirrored in their horizontal and vertical distribution patterns. Microbiol. Res., 150(3): 271-280.Google Scholar

  • SELKIRK D.R. 1975. Tertiary fossil fungi from Kiandra, New South Wales. Proc. Linn. Soc. N.S.W., 97: 141-149.Google Scholar

  • SHERWOOD-PIKE M.A. 1988. Freshwater fungi: fossil record and paleoecological potential. Palaeogeogr. Palaeoclimatol. Palaeoecol., 62(1): 271-285.CrossrefGoogle Scholar

  • SMITH P.H. 1980. Trichothyriaceous fungi from the Early Tertiary of southern England. Palaeontology, 23(1): 205-212.Google Scholar

  • ŚLIWIŃSKA K.K. & HEILMANN-CLAUSEN C. 2011. Early Oligocene cooling reflected by the dinoflagellate cyst Svalbardella cooksoniae. Palaeogeogr. Palaeoclimatol. Palaeoecol., 305(1): 138-149.Google Scholar

  • THAUNG M.M. 2006. Biodiversity of phylloplane ascomycetes in Burma. Australas. Mycol., 25(1): 5-23.Google Scholar

  • VIKULIN S.V., UPCHURCH G.R., LEPAGE B.A. & KARATYGIN I.V. 2010. Predstavitel’ semeïstva Microthyriaceae (Dothideales, Ascomycota) iz paleogena Kanadskoï Arktiki (summary: New data on the Arctic Conifers from the Early Cenozoic of the North America). Bot. Zhurnal, 95(7): 897-909.Google Scholar

  • WU H.X., SCHOCH C.L., BOONMEE S., BAHKALI A.H., CHOMNUNTI P. & HYDE K.D. 2011. A reappraisal of Microthyriaceae. Fungal Divers., 51(1): 189-248. PubMedCrossrefGoogle Scholar

About the article

Published Online: 2013-12-31

Published in Print: 2013-12-01

Citation Information: Acta Palaeobotanica, Volume 53, Issue 2, Pages 165–179, ISSN (Print) 2082-0259, DOI: https://doi.org/10.2478/acpa-2013-0014.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

D.L. Roberts, F.H. Neumann, H.C. Cawthra, A.S. Carr, L. Scott, E.U. Durugbo, M.S. Humphries, R.M. Cowling, M.K. Bamford, C. Musekiwa, and M. MacHutchon
Global and Planetary Change, 2017, Volume 150, Page 1
Grzegorz Worobiec, Frank Harald Neumann, Elżbieta Worobiec, Verena Nitz, and Christoph Hartkopf-Fröder
Fungal Biology, 2017, Volume 121, Number 3, Page 285

Comments (0)

Please log in or register to comment.
Log in