Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Palaeobotanica

The Journal of W. Szafer Institute of Botany of Polish Academy of Sciences

2 Issues per year

CiteScore 2016: 1.17

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 0.513

Open Access
See all formats and pricing
More options …

Fossil fruit of Cocos L. (Arecaceae) from Maastrichtian-Danian sediments of central India and its phytogeographical significance

Rashmi Srivastava / Gaurav Srivastava
Published Online: 2014-06-17 | DOI: https://doi.org/10.2478/acpa-2014-0003


A fossilised palm fruit of Cocos L. (C. binoriensis sp. nov.) is reported from the Binori Reserve Forest, Ghansor, Seoni District, Madhya Pradesh, India. The fruit is a 3-dimensionally preserved drupe, ovoid with clearly visible longitudinal ridges. The husk is made up of a thin smooth exocarp and fibrous mesocarp, with vertical and horizontal fibres present on the inner surface of the endocarp. The fruit is Maastrichtian-Danian in age and is the world’s oldest fossil record of Cocos. The genus Cocos is now distributed in coastal areas of pantropical regions. The occurrence of Cocos along with coastal and mangrove remains such as Acrostichum, Barringtonia, Nypa, Sonneratia and marine algae Distichoplax and Peyssonellia previously recorded from Deccan Intertrappean beds further confirms the proximity of sea in the area in central India and indicates warm and humid conditions. The presence of Cocos and previously recorded palaeoflora supports the existence of tropical wet evergreen to semi-evergreen forests at the time of deposition in the area, in contrast to the dry to moist deciduous forests existing today in central India. The probable reasons for the change in climatic conditions are withdrawal of an arm of the sea from central India, the change in latitude, and a significant uplift of the Western Ghats during post-trappean times.

KEYWORDS: Cocos; Arecaceae; Maastrichtian-Danian; coastal; climate; pantropical


  • BAJPAI S. 2009. Biotic perspective of the Deccan volcanism and India-Asia collision: Recent advances.In: Mukunda N. (ed.), Current Trends in Science - Platinum Jubilee Spec. Publ., Indian Acad. Sci., 505-516Google Scholar

  • BALLANCE P.F., GREGORY M.R. & GIBSON G.W.1981. Coconuts in Miocene turbidities in New Zealand: possible evidence for tsunami origin of same turbidity currents. Geology, 9: 592-598.CrossrefGoogle Scholar

  • BANDE M.B. 1992. The Palaeogene vegetation of Peninsular India (megafossil evidences). Palaeobotanist, 40: 275-284.Google Scholar

  • BANDE M.B. & PRAKASH U. 1982. Palaeoclimate and palaeogeography of central India during Early Tertiary. Geophytology, 12(2): 152-165.Google Scholar

  • BANDE M.B., PRAKASH U. & BONDE S.D. 1981.Occurrence of Peyssonnelia and Distichoplax in the Deccan Intertrappeans with remarks on the age of Chhindwara traps and palaeoecology of the region. Geophytology, 11(2): 182-188.Google Scholar

  • BECCARI O. 1963. The origin and dispersion of Cocos nucifera. Principes, 7: 57-69.Google Scholar

  • BERRY E.W. 1914. The Upper Cretaceous and Eocene floras of South Carolina and Georgia. US Geol. Surv. Prof. Paper, 84: 5-200.Google Scholar

  • BERRY E.W. 1926. Cocos and Phymatocaryon in the Pliocene of New Zealand. Am. Jour. Sci., 12: 181-184.Google Scholar

  • BONDE S.D., GAMRE P.G. & MAHABALE T.S. 2004. Further contribution to Palmoxylon (Cocos) sundaram Sahni: Structure of the rooting base and its affinities: 229-235. In: Srivastava P.C. (ed.), Vistas in Palaeobotany and Plant Morphology: Evolutionary and Environmental Perspectives. Prof. D.D. Pant Commemoration Vol.Google Scholar

  • BONDE S.D. & KUMARAN K.P.N. 2002. A permineralised species of mangrove fern Achrostichum from the Deccan Intertrappean beds of India. Rev. Palaeobot. Palynol., 120: 285-299.Google Scholar

  • CHASE M.W., FAY M.F., DEVEY D.S., MAURIN O., RONSTED N., DAVIES J. & PILLON Y. 2006. Multigene analyses of monocot relationships: A summary. Aliso, 22: 63-75.Google Scholar

  • CHATTERJEE S., GOSWAMI A. & SCOTESE C.R. 2013. The longest voyage: Tectonic, magmatic, and palaeoclimatic evolution of Indian plate during its northward flight from Gondwana to Asia. Gond. Res., 23: 238-267.Google Scholar

  • CHENET A., COURTILLOT V., FLUTEAU F., GÉRARD M., QUIDELLEUR X., KHADRI S.F.R., SUBBARAO K.V. & THORDARSON T. 2009. Determination of rapid Deccan eruptions across the Cretaceous- Tertiary boundary using palaeomagnetic secular variation: 2. Constraints from analysis of eight new sections and synthesis for a 3500-m-thick composite section. J. Geophysical Res., 114: B06103.Google Scholar

  • CHITALEY S. & NAMBUDIRI E.M.V. 1995. Anatomy of Nypa fruits reviewed from new specimens from the Deccan Intertrappean flora of India. 83-94. In: Pant D.D. (ed.), Proc. Internatn. Conf. on Global Environment and Diversification of Plants through Geological Time. Allahabad.Google Scholar

  • COOK O.F. 1910. History of the coconut palm in America. Contributions from the U. S. National Herbarium, 14: 271-342.Google Scholar

  • CORNER E.J.H. 1966. The natural history of palms. London, UK: Weidenfeld and Nicholson.Google Scholar

  • COUVREUR T.L.P., FOREST F. & BAKER W.J. 2011. Origin and global diversification patterns of tropical rain forests: Inferences from a complete genuslevel phylogeny of palms. BMC Biology, 9: 44.PubMedCrossrefGoogle Scholar

  • CRIPPS J.A., WIDDOWSON M., SPICER R.A. & JOLLY D.W. 2005. Coastal ecosystem response to late stage Deccan Trap volcanism: the post K-T boundary (Danian) palynofacies of Mumbai (Bombay), west India. Palaeogeogr. Palaeoclimat. Palaeoecol., 216: 303-332.Google Scholar


  • MICHELANGELI F.A., GOLDMAN D.H., CAMPBELL L.M., SPECHT C.D. & COHEN J.I. 2006. Are mitochondrial genes useful for the analysis of monocot relationships? Taxon, 55(4): 857-870.Google Scholar

  • DRANSFIELD J., UHL N.W., ASMUSSEN C.B., BAKER W.J., HARLEY M.M. & LEWIS C.E. 2005. A new phylogenetic classification of the palm family, Arecaceae. Kew Bull., 60: 559-569.Google Scholar

  • DRANSFIELD J., UHL N.W., ASMUSSEN C.B., BAKER W.J., HARLEY M.M. & LEWIS C.E. 2008. Genera palmarum: The evolution and classification of palms. Royal Botanic Gardens, Kew, UK.Google Scholar

  • EDMONDSON C.H. 1941. Viability of coconut seed after floating in sea. Occasional papers of Bermice P. Bishop Museum Honolulu, Hawaii, 16: 293-304.Google Scholar

  • FUTEY M.K., GANDOLFO M.A., ZAMALOA M.C., CÚNEO R. & CLADERA G. 2012. Arecaceae fossil fruits from the Paleocene of Patagonia, Argentina. Bot. Rev., 78: 205-234.Google Scholar

  • GOMEZ-NAVARRO C., JARAMILLO C., HERRERA F., WING S.L. & CALLJAS R. 2009. Palms (Arecaceae) from a Palaeocene rainforest of northern Colombia. Am. J. Bot., 96: 1300-1312.CrossrefGoogle Scholar

  • GOVAERTS R. & DRANSFIELD J. 2005. World Checklist of Palms. Royal Botanic Garden, Kew, UK.Google Scholar

  • GRADSTEIN F.M., OGG J.G. & SMITH A. 2004. A Geologic Time Scale. Cambridge, UK: Cambridge University Press.Google Scholar

  • G.S.I. 2002. District resource map of Seoni District, Madhya Pradesh.Google Scholar

  • GULERIA J.S. & MEHROTRA R.C. 1999. On some plant remains from Deccan intertrappean localities of Seoni and Mandla districts of Madhya Pradesh, India. Palaeobotanist, 47: 68-87.Google Scholar

  • GUNELL Y., GALLAGHER K., CARTER A., WIDDOWSON M. & HURFORD A.J. 2003. Denudation history of the continental margin of western peninsular India since the early Mesozoic-reconciling apatite fission-track data with geomorphology. Earth Planet. Sci. Lett., 215: 187-201.Google Scholar

  • GUNN B.F. 2004. The phylogeny of the Cocoseae (Arecaceae) with emphasis on Cocos nucifera. Ann. Missouri Bot. Gard., 91: 505-522.Google Scholar

  • GUNN B.F., BAUDOUIN L. & OLSEN K.M. 2011. Independent Origins of Cultivated Coconut (Cocos nucifera L.) in the Old World Tropics. PLOS ONE, 6(6): e21143. doi:10.1371/journal.pone.0021143CrossrefGoogle Scholar

  • GUPPY H.B. 1906. Observations of a Naturalist in the Pacific between 1896 and 1899. Plant dispersal, 2. London, U.K.: Macmillan.Google Scholar

  • HARLEY M.M. 2006. A summary of fossil records for Arecaceae, Botanical Journal of the Linnean Society, 151: 39-67.Google Scholar

  • HARRIES H.C. 1978. The evolution, dissemination, and classification of Cocos nucifera L. Bot. Rev., 44: 265-319.Google Scholar

  • HARRIES H.C. 1992. Biogeography of the Coconut Cocos nucifera L. Principes, 36(3): 155-162.Google Scholar

  • JONES D.L. 1995. Palms throughout the world. Chatswood: Reed Books.Google Scholar

  • KAR R.K. & SRINIVASAN S. 1988. Late Cretaceous palynofossils from the Deccan Intertrappean beds of Mohgaon-Kalan, Chhindwara District, Madhya Pradesh. Geophytology, 27: 17-22.Google Scholar

  • KAUL K.N. 1951. A palm fruit from Kapurdi (Jodhpur, Rajasthan Desert) Cocos sahnii sp. nov. Curr. Sci., 20: 138.PubMedGoogle Scholar

  • KELLER G., ADATTE T., BAJPAI S., MOHABEY D.M., WIDDOWSON M., KHOSLA A., SHARMA R., KHOSLA S.C., GETSCH B., FLEITMANN D. & SAHNI A. 2009a. K-T transition in Deccan Traps of central India marks major marine seaway across India. Earth Planet. Sci. Lett., 282: 10-23.Google Scholar

  • KELLER G., SAHNI A. & BAJPAI S. 2009b. Deccan Volcanism, the KT Mass Extinction and Dinosaurs. J. Biosci., 34 (5): 709-728.PubMedGoogle Scholar

  • KHOSLA A. & SAHNI A. 2003. Biodiversity during the Deccan volcanic eruptive episode. J. Asian Earth Sci., 21: 895-908.CrossrefGoogle Scholar

  • KHOSLA S.C. 1999. Costabuntonia, a new genus of Ostracoda from the Intertrappean beds (Paleocene) of east coast of India. Micropaleontology, 45: 319-323.CrossrefGoogle Scholar

  • KVAČEK J. & HERMAN A.B. 2004. Monocotyledons from Early Campanian (Cretaceous) of Grunbach, Lower Austria. Rev. Palaeobot. Palynol., 128: 323-353.Google Scholar

  • KULKARNI A.R. & MULANI R.M. 2004. Indigenous palms of India. Curr. Sci., 86(12): 1598-1603.Google Scholar

  • LAKHANPAL R.N. 1970. Tertiary floras of India and their bearing on the historical geology of the region. Taxon, 19(5): 675-694.CrossrefGoogle Scholar

  • LÖTSCHERT W. 2006. Palmen: Botanik, Kultur, Nutzung. Stuttgart: Ulmer.Google Scholar

  • MABBERLEY D.J. 2005. The plant book, a portable dictionary of the vascular plants. Cambridge: Cambridge University Press.Google Scholar

  • MAHABALE T.S. 1978. The origin of Coconut. Palaeobotanist, 25: 238-248.Google Scholar

  • MANCHESTER S.R., LEHMAN T.M. & WHEELER E.A. 2010. Fossil palms (Arecaceae, Coryphoideae) associated with juvenile herbivorous dinosaurs in the upper Cretaceous Aguja Formation, Big Bend National Park, Texas. Int. J. Plant Sci., 171(6): 679-689.CrossrefGoogle Scholar

  • MEHROTRA R.C. 1987. Some new palm fruits from the Deccan Intertrappean beds of Mandla District, Madhya Pradesh. Geophytology, 17: 204-208.Google Scholar

  • MISHRA S.N. 2004. Cocos pantii sp. nov. The Tertiary counterpart of modern coconut fruit from Amarkantak, India. 237-239. In: Srivastava P.C. (ed.), Vistas in Palaeobotany and Plant Morphology: Evolutionary and Environmental Perspectives. U.P. Offset: India.Google Scholar

  • MOORE H.E. 1973. The major groups of palms and their distribution. Gentry Herbarium, 11: 27-141.Google Scholar

  • ODSN - www.odsn.de/odsn/index.html Google Scholar

  • PATIL G.V. & UPADHYE E.V. 1984. Cocos-like fruit from Mohgaonkalan and its significance towards the stratigraphy of Mohgaonkalan Intertrappean beds: 541-554. In: Sharma A.K., Mitra G.C., Banerjee M. (eds), Proc. Symp. Evolutionary Botany and Biostratigraphy, New Delhi: Today and Tomorrow’s Printers and Publishers.Google Scholar

  • RIGBY J.F. 1995. A fossil Cocos nucifera L. fruit from the latest Pliocene of Queensland, Australia. 379-381. In: Pant D.D., Nautiyal D.D., Bhatnagar A.N., Surange K.R., Bose M.N. & Khare P.K. (eds), Birbal Sahni Centenary Volume, South Asian Publisher: Allahabad, India.Google Scholar

  • SAHNI A. 1983. Upper Cretaceous palaeobiogeography of peninsular India and the Cretaceous-Paleocene transition: The vertebrate evidence: 128-140. In: Maheshwari H.K. (ed), Cretaceous of India. Indian Association of Palynostratigraphers. Lucknow.Google Scholar

  • SAHNI B. 1934. The Deccan Traps: Are they Cretaceous or Tertiary? Curr. Sci., 3: 134-136.Google Scholar

  • SAHNI B. 1946. A silicified Cocos-like palm stem, Palmoxylon (Cocos) sundaram, from the Deccan Intertrappean Beds. J. Indian Bot. Soc., 26: 361-374.Google Scholar

  • SAMANT B. & MOHABEY D.M. 2009. Palynoflora from Deccan volcano-sedimentary sequence (Cretaceous- Palaeogene transition) of central India: implications for spatio-temporal correlation. J. Biosci., 34(5): 811-823.PubMedGoogle Scholar

  • SHUKLA A., MEHROTRA R.C. & GULERIA J.S. 2012. Cocos sahnii Kaul: A Cocos nucifera L.-like fruit from the Early Eocene rainforest of Rajasthan, western India. J. Biosci., 37(4): 769-776.Google Scholar

  • SRIVASTAVA R. 2008. Fossil woods resembling Sonneratia with fungal infection from Deccan Intertrappean sediments of Seoni District, Madhya Pradesh. Geophytology, 37: 87-92.Google Scholar

  • SRIVASTAVA R. 2010. Fossil dicotyledonous woods from Deccan Intertrappean sediments of Ghansor, Seoni District, Madhya Pradesh, India. Palaeobotanist, 59: 129-138.Google Scholar

  • SRIVASTAVA R. 2011. Indian upper Cretaceous-Tertiary flora before collision of Indian Plate: A reappraisal of Central and Western Indian Flora. Mem. Geol. Soc. India, 77: 281-292.Google Scholar

  • SRIVASTAVA R., KAPGATE D.K. & CHATERJEE S. 2009. Permineralised fungal remains in the fossil wood of Barringtonia from the Deccan Intertrappean sediments of Yavatmal District, Maharashtra, India. Palaeobotanist, 58: 11-19.Google Scholar

  • TAKAHASHI K. 1964. Sporen und Pollen der Oberkretazischen Hakobuchi-Schichtengruppe, Hokkaido. Mem. Fac. Sci. Kyushu Univ., Series D, Geology, 14: 159-271.Google Scholar

  • TOMLINSON P.B. 1990. The structural biology of palms. Oxford: Clarendon Press.Google Scholar

  • TRIPATHI R.P., MISHRA S.N. & SHARMA B.D. 1999. Cocos nucifera like petrified fruit from the Tertiary of Amarkantak, M.P., India. Palaeobotanist, 48: 251-255.Google Scholar

  • WARD R.G. & BROOKFIELD M.N. 1992. The dispersal of the coconut: Did it float or was it carried to Panama. J. Biogeogra., 19: 467-480. Google Scholar

About the article

Received: 2013-10-20

Accepted: 2014-03-14

Published Online: 2014-06-17

Published in Print: 2014-06-01

Citation Information: Acta Palaeobotanica, Volume 54, Issue 1, Pages 67–75, ISSN (Online) 2082-0259, DOI: https://doi.org/10.2478/acpa-2014-0003.

Export Citation

© by Rashmi Srivastava. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

P K Kathal, Rashmi Srivastava, R C Mehrotra, and P O Alexander
Journal of Earth System Science, 2017, Volume 126, Number 3

Comments (0)

Please log in or register to comment.
Log in