Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Palaeobotanica

The Journal of W. Szafer Institute of Botany of Polish Academy of Sciences

2 Issues per year

CiteScore 2016: 1.17

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 0.513

Open Access
See all formats and pricing
More options …

Fossil zygospores of Zygnemataceae and other microremains of freshwater algae from two Miocene palaeosinkholes in the Opole region, SW Poland

Elżbieta Worobiec
  • Department of Palaeobotany, Władysław Szafer Institute of Botany, Polish Academy of Sciences, Lubicz 46, PL-31-512 Kraków, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-06-17 | DOI: https://doi.org/10.2478/acpa-2014-0005


Algal microremains were encountered during palynological investigation of deposits filling two Miocene palaeosinkholes excavated in the Tarnów Opolski and Górażdże quarries. Algal microfossils of 40 species were identified, most of which are frequent non-pollen palynomorphs occurring in Neogene deposits. The microfossils most frequently found in all studied samples belong to the genera Sigmopollis and Botryococcus. Both algal assemblages contain a significant proportion of resting cells (zygospores = hypnozygotes) such as Cycloovoidites, Diagonalites, Megatetrapidites, Ovoidites, Stigmozygodites, and Tetrapidites, probably fossil zygospores of members of the Zygnemataceae family (Mougeotia, Spirogyra, Zygnema). Some specimens probably related to desmid zygospores (Closteritetrapidites, Monopunctites, Planctonites), freshwater dinoflagellate cysts, and Prasinophyceae (Leiosphaeridia) were found. Most of the identified fossilised remains of algae are often seen in sediments indicating meso- to eutrophic conditions and are characteristic for stagnant or slowly flowing shallow waters. Fossil algae of Pediastrum and Tetraedron genera were recorded in samples from the Górażdże palaeosinkhole, suggesting small differences in the aquatic habitat (e.g. water depth) between ponds in the sinkholes. Three new fossil species related to zygospores of the Zygnemataceae are described: Ovoidites vangeelii sp. nov., Tetrapidites grandis sp. nov., and Tetrapidites opolensis sp. nov

KEYWORDS: fossil freshwater microalgae; zygospores; Conjugatophyceae (=Zygnematophyceae); non-pollen palynomorphs (NPP); palaeoenvironment; Miocene; Poland


  • AGASIE J.M. 1969. Late Cretaceous palynomorphs from northeastern Arizona. Micropaleontology, 15(1): 13-30.CrossrefGoogle Scholar

  • ALTEHENGER A. 1959. Floristisch belegte Klimaschwankungen im mitteleuropäischen Pliozän der Reuver-Stufe. Palaeontographica, B, 106(1-3): 11-70.Google Scholar

  • ASHRAF A.R. & MOSBRUGGER V. 1996. Palynologie und Palynostratigraphie des Neogenes der Niederrheinischen Bucht. Teil 2. Pollen. Palaeontographica, B, 241(1-4): 1-98.Google Scholar

  • BATTEN D.J. & GRENFELL H.R. 1996. Chapter 7D. Botryococcus: 205-214. In: Jansonius J. & McGregor D.C. (eds), Palynology: principles and applications. Am. Ass. Stratigr. Palynol. Found., Vol. 1.Google Scholar

  • BERCOVICI A., PEARSON D., NICHOLS D. & WOOD J. 2009. Biostratigraphy of selected K/T boundary sections in southwestern North Dakota, USA: toward a refinement of palynological identification criteria. Cret. Res., 30(3): 632-658.Google Scholar

  • BETTAR I. & MÉON H. 2006. La palynoflore continentale de l’Albien du bassin d’Agadir-Essaouira (Maroc). Rev. Paléobiol., Genève, 25(2): 593-631.Google Scholar

  • BIRKENMAJER K. & WOROBIEC E. 2013. Pliocene freshwater pollen-bearing deposits in the Mizerna- Nowa borehole, West Carpathians, Poland. Geol. Quart., 57(1): 73-88.Google Scholar

  • BLOKKER P. 2000. Structural analysis of resistant polymers in extant algae and ancient sediments. Geologica Ultraiectina, 193: 1-145.Google Scholar

  • BLOKKER P., SCHOUTEN S., VAN DEN ENDE H., DE LEEUW J.W., HATCHER P.G. & SINNINGHE DAMSTÉ J.S. 1998. Chemical structure of algaenans from the fresh water algae Tetraedron minimum, Scenedesmus communis and Pediastrum boryanum. Org. Geoch., 29: 1453-1468.Google Scholar

  • BOGUS K., HARDING I.C., KING A., CHARLES A.J., ZONNEVELD K.A.F. & VERSTEEGH G.J.M. 2012. The composition and diversity of dinosporin in species of the Apectodinium complex (Dinoflagellata). Rev. Palaeobot. Palynol., 183: 21-31.Google Scholar

  • BOLKHOVITINA N.A. 1953. Sporovo-pyl’cevaya kharakteristika melovykh otlozheny central’nykh oblastey SSSR. Trudy Instituta Geologicheskikh Nauk / Geol. ser. Izd. Akad. Nauk SSSR, Moskva.Google Scholar

  • BOURRELLY P. 1970. Les Algues d’eau douce. III. Algues blues et rouge. Editions N. Boubée, Paris.Google Scholar

  • BRETON G. 2007. La bioaccumulation de microorganismes dans l’ambre: analyse comparée d’un ambre cénomanien et d’un ambre sparnacien, et de leurs tapis algaires et bactériens. C. R. Palevol, 6: 125-133.CrossrefGoogle Scholar

  • BROOK A.J. & JOHNSON L.R. 2002. Order Zygnematales: 479-593. In: John D.M., Whitton B.A. & Brook A.J. (eds), The Freshwater Algal Flora of the British Isles. An identification guide to freshwater and terrestrial algae. Cambridge, Cambridge University Press.Google Scholar

  • BRUCH A. 1998. Palynologische Untersuchungen im Oligozän Sloweniens - Paläo-Umwelt und Paläoklima im Ostalpenraum. Tübingen Mikropal. Mitteil., 18: 1-193.Google Scholar

  • CARRIÓN J.S. 2002. Patterns and processes of Late Quaternary environmental change in a montane region of southwestern Europe. Quater. Sci. Rev., 21: 2047-2066.CrossrefGoogle Scholar

  • CARRIÓN J.S. & NAVARRO C. 2002. Cryptogram spores and other non-pollen microfossils as source of palaeoecological informations: case-studies from Spain. Ann. Bot. Fennici, 39: 1-14.Google Scholar

  • CARRIÓN J.S., SCOTT L., HUFFMAN T. & DREYER C. 2000. Pollen analysis of Iron Age cow dung in southern Africa. Veget. Hist. Archaeobot., 9: 239-249.Google Scholar

  • CHMURA G.L., STONE P.A. & ROSS M.S. 2006. Nonpollen microfossils in Everglades sediments. Rev. Palaeobot. Palynol., 141: 103-119.Google Scholar

  • COLBATH C.K & GRENFELL H.R. 1995. Review of botanical affinities of Paleozoic acid-resistant, organic-walled eukaryotic algal microfossils (including “acritarchs”). Rev. Palaeobot. Palynol. 86: 287-314.Google Scholar

  • COLEMAN A.W. 1983. The roles of resting spores and akinetes in chlorophyte survival: 1-22. In: Fryxell G.A. (ed.), Survival strategies of the algae, CUP Archive.Google Scholar

  • COLLINSON M.E., SINGER R.L. & HOOKER J.J. 1992. Vegetational change in the latest Eocene of southern England: 81-87. In: Planderová E., Konzálová M., Kvaček Z., Sitár V., Snopková P., and Suballyová D., (eds), Proceedings of the international symposium „Paleofloristic and paleoc changes during Cretaceous and Tertiary”, Bratislava 1992.Google Scholar

  • COOKSON I.C. & DETTMANN M.E. 1959. On Schizosporis, a new form genus from Australian Cretaceous deposits. Micropaleontology, 5(2): 213-216.CrossrefGoogle Scholar

  • COOKSON I.C. & EISENACK A. 1962. Some Cretaceous and Tertiary microfossils from Western Australia. Proc. Royal Soc. Victoria, 75: 269-273.Google Scholar

  • CROASDALE H. & FLINT E.A. 1986. Flora of New Zealand. Freshwater algae, Chlorophyta, Desmids, with ecological comments on their habitats. vol. 1. Wellington. Govt. Print.Google Scholar

  • DE LEEUW J.W., VERSTEEGH G.J.M. & VAN BERGEN P.F. 2006. Biomacromolecules of algae and plants and their fossil analogues. Plant Ecology, 182: 209-233.Google Scholar

  • DEMSKE D., TARASOV P.E., NAKAGAWA T. & SUIGETSU 2006 PROJECT MEMBERS. 2013. Atlas of pollen, spores and further non-pollen palynomorphs recorded in the glacial-interglacial late Quaternary sediments of Lake Suigetsu, central Japan. Quater. Internat., 290-291: 164-238.Google Scholar

  • DOKTOROWICZ-HREBNICKA J. 1957. Wzorcowe spektra pyłkowe plioceńskich osadów węglonośnych (summary: Index pollen spectra of Pliocene coal-bearing sediments). Pr. Inst. Geol., 15: 87-137.Google Scholar

  • DOKTOROWICZ-HREBNICKA J. 1960. Paralelizacja pokładów węgla brunatnego województwa bydgoskiego i poznańskiego (summary: Correlation of brown coal seams from the provinces of Poznań and Bydgoszcz). Biul. Inst. Geol., 157: 69-138.Google Scholar

  • DOKTOROWICZ-HREBNICKA J. 1961. Paleobotaniczne podstawy paralelizacji pokładów węgla brunatnego ze złoża Rogóźno pod Łodzią I, II (summary: Palaeobotanical bases for the correlation of brown coal seams from the Rogóźno deposits near Łódź I, II). Biul. Inst. Geol., 158: 113-303.Google Scholar

  • DOKTOROWICZ-HREBNICKA J. 1964. Palynologiczna charakterystyka najmłodszych pokładów węgla brunatnego złoża Rogóźno (summary: A palynological characteristic of the youngest brown coal seams in the Rogóźno coal field). Biul. Inst. Geol., 183: 7-99.Google Scholar

  • FEDOROVA W.A., RUNDINA L.A., LYUBOMIROVA K.A. & STANICHNIKOVA M.S. 1989. Morfotipy zigospor sovremiennykh konyugat i ikh wozmozhnye iskopaemye analogi. Fitostratygrafiya i morfologiya spor drewnykh rasteny nieftegazonosnykh prowincy SSSR, pp. 93-104.Google Scholar

  • FÖRSTER K. 1982. Conjugatophyceae. Zygnematales und Desmidiales (excl. Zygnemataceae). In: Huber- Pestalozzi (ed.), Das Phytoplankton des Süßwassers. Systematik und Biologie. E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar

  • GRABOWSKA I. 1974. Stratygrafia osadów paleogeńskich na Niżu Polskim w świetle badań mikroflorystycznych (summary: Stratigraphy of Palaeogene sediments in the Polish Lowlands in the light of research on microflora). Biul. Inst. Geol., 281: 67-90.Google Scholar

  • GRABOWSKA I. 1996a. Gromada Chlorophyta. Incerte sedis: 387-392. In: Malinowska L. & Piwocki M. (eds), Budowa Geologiczna Polski. t.III. Atlas skamieniałości przewodnich i charakterystycznych. Part 3a. Kenozoik. Trzeciorzęd. Paleogen. PIG, Polska Agencja Ekologiczna, Warszawa.Google Scholar

  • GRABOWSKA I. 1996b. Gromada Chlorophyta: 774-778. In: Malinowska L. & Piwocki M. (eds), Budowa Geologiczna Polski. t.III. Atlas skamieniałości przewodnich i charakterystycznych. Part 3a. Kenozoik. Trzeciorzęd. Neogen. PIG, Polska Agencja Ekologiczna, Warszawa.Google Scholar

  • GRABOWSKA I. 2003. Glony jednokomórkowe i kolonijne: 362-363. In: Dybova-Jachowicz & Sadowska A. (eds), Palinologia. Instytut Botaniki im. W. Szafera PAN, Kraków.Google Scholar

  • GRABOWSKA I. & WAŻYŃSKA H. 1997. Badania palinologiczne i fitoplanktonowe osadów trzeciorzędowych z Pobrzeża Gdańskiego i z Bałtyku (summary: Spore, pollen and phytoplankton investigations of the Tertiary deposits from Gdańsk sea-coast and the Baltic floor). Biul. Państw. Inst. Geol., 375: 5-41.Google Scholar

  • GRAHAM A. 1971. The role of myxomycete spores in palynology (with a brief note on the morphology of certain algal zygospores). Rev. Palaeobot. Palynol., 11: 89-99.Google Scholar

  • GRAHAM L.E. 1993. The origin of land plants. Wiley and Sons, New York.Google Scholar

  • GRENFELL H.R. 1995. Probable fossil zygnematacean algal spore genera. Rev. Palaeobot. Palynol., 84: 201-220.Google Scholar

  • GROTE M. 1977. Über die Auslösung der generativen Fortpflanzung unter kontrollierten Bedingungen bei der Grünalge Spirogyra majuscule. Z. Pflanzenphysiol., 83: 95-107.CrossrefGoogle Scholar

  • GRUAS-CAVAGNETTO C. 1968. Étude palynologique des divers gisements du Sparnacien du bassin de Paris. Mém. Soc. Géol. France, (N.S.), 47(110): 1-144.Google Scholar

  • GRUAS-CAVAGNETTO C. 1974. Association sporopolliniques et microplanctoniques de l’Éocene et l’Oligocéne inferiéur du bassin de Paris. Palaeobiol. Cont., 5(2): 1-20.Google Scholar

  • GUIRY M.D. 2013. Taxonomy and nomenclature of the Conjugatophyceae (=Zygnematophyceae). Algae. An Intern. J. Algal Res., 28: 1-29.Google Scholar

  • GUIRY M.D. in GUIRY M.D. & GUIRY G.M. 2014. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http:// www.algaebase.org; searched on 02 January-6Google Scholar

  • February 2014. PubMedGoogle Scholar

  • GUY-OHLSON D. 1992. Botryococcus as an aid in the interpretation of palaeoenvironment and depositional processes. Rev. Palaeobot. Palynol., 71: 1-15.Google Scholar

  • GUY-OHLSON D. 1998. The use of the microalga Botryococcus in the interpretation of lacustrine environments at the Jurassic-Cretaceous transition in Sweden. Palaeogeogr. Palaeoclimatol. Palaeoecol., 140: 347-356. Google Scholar

  • HANDKE K. 1996. Zygosporen Saccodermer und Placodermer Desmidiaceen (Conjugatophyceae, Chlorophyta) in Aufsammlungen der Jahre 1971-1995 aus Europa, Asien und Amerika. Mitteil. Inst. Allgem. Bot. Hamburg, 26: 5-129.Google Scholar

  • HEAD M.J. 1992. Zygospores of Zygnemataceae (Division Chlorophyta) and other freshwater algal spores from the uppermost Pliocene St. Erth Beds of Cornwall, southwestern England. Micropaleontology, 38: 237-260.CrossrefGoogle Scholar

  • HEDLUND R.W. 1965. Sigmopollis hispidus gen. et sp. nov. from Miocene sediments, Elko County, Nevada. Pollen et Spores, 7(1): 89-92.Google Scholar

  • HEDLUND R.W. 1966. Palynology of the Red Branch Member of the Woodbine Formation (Cenomanian), Bryan County Oklahoma. Oklah. Geol. Surv., Bull., 112: 1-69.Google Scholar

  • HERRMANN M. 2010. Palaeoecological reconstruction of the late Oligocene Maar Lake of Enspel, Germany using lacustrine organic walled algae. Palaeobiodiv. Palaeoenvir., 90: 29-37.Google Scholar

  • HOOKER J.J., COLLINSON M.E., VAN BERGEN P.F., SINGER R.L., DE LEEUW J.W. & JONES T.P. 1995. Reconstruction of land and freshwater palaeoenvironments near the Eocene-Oligocene boundary, southern England. J. Geol. Soc., 152: 449-468.CrossrefGoogle Scholar

  • HOSHAW R.W. 1968. Biology of the filamentous conjugating algae. Algae, man and the environment. Syracuse University Press, Syracuse.Google Scholar

  • HOSHAW R.W. & McCOURT R.M. 1988. The Zygnemataceae (Chlorophyta): a twenty-year update of research. Phycologia, 27: 511-548.CrossrefGoogle Scholar

  • HUNGER R. 1952. Die Pollenflora der Braunkohle von Seidewitz im Tümmlitzer Wald zwischen Leisnig und Grimma. Bergakademie, Berlin, 4: 192-202.Google Scholar

  • ICHIMURA T. & WATANABE M. 1974. The Closterium calosporum complex from the Ryukyu Islands - Variation and taxonomical problems. Mem. Natn. Sci. Mus. Tokyo, 7: 89-102.Google Scholar

  • JAIN R.K. 1968. Triassic pollen grains and spores from Minas Petroleo Beds of the Cacheuta Formation (Upper Gondwana), Argentina. Palaeontographica, B, 122: 1-47.Google Scholar

  • JANKOVSKÁ V. & KOMÁREK J. 2000. Indicative value of Pediastrum and other coccal green algae in palaeoecology. Folia Geobot., 35: 59-82.CrossrefGoogle Scholar

  • JANSONIUS J. & HILLS L.V. 1980. Genera file of fossil spores - supplement. Special publication. Department of Geology, University of Calgary.Google Scholar

  • JARZEN D.M. 1979. Zygospores of Zygnemataceae in the Palaeocene of southern Saskatchewan (Canada). Rev. Palaeobot. Palynol., 28: 21-25.Google Scholar

  • KADŁUBOWSKA J.Z. 1972. Chlorophyta V. Conjugales: Zygnemaceae. Zrostnicowate. In: Starmach K. & Siemińska J. (eds), Flora słodkowodna Polski, vol. 12A. PWN, Kraków.Google Scholar

  • KADŁUBOWSKA J.Z. 1984. Süsswasserflora von Mitteleuropa, Band 16, Chlorophyta VIII = Conjugatophyce I (Zygnemales). Gustav Fischer Verlag, Stuttgart.Google Scholar

  • KADOURI A., DERENNE S., LARGEAU C., CASADEVALL E. & BERKALOFF C. 1988. Resistant biopolymer in the outer walls of Botryococcus braunii, B race. Phytochemistry, 27: 551-557.CrossrefGoogle Scholar

  • KAOURAS G. & VELITZELOS E. 1990. A brown coal seam from the Thomas-Prezeva (W. Greece). Acta Palaeobot., 30(1, 2): 41-46.Google Scholar

  • KEDVES M. 1969. Palynological studies on Hungary Early Tertiary deposits. Akadémiai Kiadó, Publishing House of the Hungarian Akademy of Sciences, Budapest.Google Scholar

  • KLAUS W. 1950. Palynologie (pollenanalytische) Untersuchungen an der oberpannonen Braunkohle von Neufeld a. d. L. Diss. Univ. Wien, Phil. Fak. 7769, Wien.Google Scholar

  • KOMÁREK J. & JANKOVSKÁ V. 2001. Review of the green algal genus Pediastrum; implication for pollen- analytical research. Bibl. Phycol., 108: 1-127.Google Scholar

  • KONZALOVÁ M. 1976. Micropalaeobotanical (palynological) research of the Lower Miocene of Northern Bohemia. Rozpr. Českoslov. Akad. Věd, 86(12): 1-75.Google Scholar

  • KOUWETS F.A.C. 1987. Desmids from the Auvergne (France). Hydrobiologia, 146: 193-263.CrossrefGoogle Scholar

  • KRUTZSCH W. 1959. Mikropaleontologische (sporenpaleontologische) Untersuchungen in der Braunkohle des Geiseltales. Geologie, 8(21-22): 1-425.Google Scholar

  • KRUTZSCH W. 1970. Atlas der mittel- und jungtertiären dispersen Sporen- und Pollen- sowie der Mikroplanktonformen des nördlichen Mitteleuropas. VII. VEB Gustav Fischer Verlag, Jena.Google Scholar

  • KRUTZSCH W. & PACLTOVÁ B. 1990. Die Phytoplankton - Mikroflora aus den Pliozänen Süsswasserablagerungen des Cheb-Beckens (Westböhmen, ČSFR). Acta Univ. Carol. - Geologica, 4: 345-420.Google Scholar

  • KRUTZSCH W. & VANHOORNE R. 1977. Die Pollenflora von Epinois und Loksbergen in Belgien. Palaeontographica, B, 163(1-4): 1-110.Google Scholar

  • KRUTZSCH W., PCHALEK J. & SPIEGLER D. 1960. Tieferes Paläozän (?Montien) in Westbrandenburg. Proc. XXI. International Geological Congress, Kopenhagen, Part VI, 135-143.Google Scholar

  • KUHRY P. 1997. The palaeoecology of a treed bog in western boreal Canada: a study based on microfossils, macrofossils and physico-chemical properties. Rev. Palaeobot. Palyn., 96(1-2): 183-224.Google Scholar

  • LEONHARDT A. & LORSCHEITTER M.L. 2007. Palinomorfos do perfil sedimentar de uma turfeira em Săo Francisco de Paula, Planalto Leste do Rio Grande do Sul, Sul do Brasil. Rev. Brasil. Bot., 30(1): 47-59.Google Scholar

  • LI J.-F., HU Y.-Q., FERGUSON D. K., WANG Y.-F., LI C.-S. 2010. An Early Pliocene lake and its surrounding vegetation in Zhejiang, East China. J. Paleolimnol., 43: 751-769.CrossrefGoogle Scholar

  • LINDGREN S. 1980. Algal microfossils of the form genus Tetraporina from Upper Cretaceous clays southern Sweden. Rev. Palaeobot. Palynol., 30: 333-359.Google Scholar

  • LYUBOMIROVA K.A. & RUNDINA L.A. 1993. Novy rod iskopaemykh zignemovykh vodorosley (Zygnematales, Chlorophyta) i evo sovremennye analogi (A new genus of fossil Zygnemataceen algae (Zygnematales, Chlorophyta) and its recent analogs). Bot. Zhurn., 78(6): 122-126. (in Russian).Google Scholar

  • MACKO S. 1957. Lower Miocene pollen flora from the Valley of Kłodnica near Gliwice (Upper Silesia). Pr. Wrocł. Tow. Nauk., B, 88: 1-313.Google Scholar

  • MACKO S. 1959. Pollen grains and spores from Miocene brown coals in Lower Silesia. I. Pr. Wrocł. Tow. Nauk., B, 96: 1-177.Google Scholar

  • MAHMOUD M.S. 2000. Plio-Pleistocene palynology (freshwater algae, spores and pollen) and palaeoecology of the shallow subsurface section, West Assiut, Egypt. Acta Univ. Carol. - Geologica, 44(1): 101-114.Google Scholar

  • MAMCZAR J. 1960. Wzorcowy profil środkowego miocenu Polski środkowej (summary: 193-222, Standard section of the Middle Miocene from Central Poland). Biul. Inst. Geol., 157: 13-68.Google Scholar

  • MARTÍN-CLOSAS C. 2003. The fossil record and evolution of freshwater plants: A review. Geol. Acta, 1(4): 315-338.Google Scholar

  • MAUTINO L.R. 2007. Chlorophyta de los Valles Calchaquíes (Mioceno Medio y Superior) Argentina. Rev. Esp. Micropaleont., 39(1-2): 81-102.Google Scholar

  • McCARTHY F.M.G., MERTENS K.N., ELLEGAARD M., SHERMAN K., POSPELOVA V., RIBEIRO S., BLASCO S. & VERCAUTEREN D. 2011. Resting cysts of freshwater dinoflagellates in southeastern Georgian Bay (Lake Huron) as proxies of cultural eutrophication. Rev. Palaeobot. Palynol., 166: 46-62.Google Scholar

  • MEDEANIC S. 2006. Freshwater algal palynomorph records from Holocene deposits in the coastal plain of Rio Grande do Sul, Brazil. Rev. Palaeobot. Palynol., 141: 83-101.Google Scholar

  • MEDEANIC S. & SILVA M.B. 2010. Indicative value of non-pollen palynomorphs (NPPs) and palynofacies for palaeoreconstructions: Holocene Peat, Brazil. Int. J. Coal Geol., 84: 248-257.CrossrefGoogle Scholar

  • MEDEANIC S., JANKOVSKÁ V. & DILLENBURG S.R. 2003. The implication of green algae (Chlorophyta) for palaeoecological reconstruction of the Holocene lagoon system in the Tramandaí Lagoon region, Rio Grande do Sul, Brazil. Acta Palaeobot., 43(1): 113-123.Google Scholar

  • MEDEANIC S., ZAMORA N. & CORRĘA I.C.S. 2008. Non-pollen palynomorphs as environmental indicators in the surface samples from mangrove in Costa Rica. Rev. Geol. Amér. Central, 39: 27-51.Google Scholar

  • MEYER B.L. 1956. Mikrofloristische Untersuchungen an jungtertiären Braunkohlen im östlichen Bayern. Geol. Bavarica, 25: 100-128.Google Scholar

  • MIOLA A. 2012. Tools for Non-Pollen Palynomorphs (NPPs) analysis: A list of Quaternary NPP types and reference literature in English language (1972-2011). Rev. Palaeobot. Palynol., 186: 142-161.Google Scholar

  • MIOLA A., FAVARETTO S., SOSTIZZO I., VALENTINI G. & ASIOLI A. 2010. Holocene salt marsh plant communities in the North Adriatic coastal plain (Italy) as reflected by pollen, non-pollen palynomorphs and plant macrofossil analyses. Veget. Hist. Archaeobot., 19(5): 513-529.Google Scholar

  • MIOLA A., BONDESAN A., CORAIN L., FAVARETTO S., MOZZI P., PIOVAN S. & SOSTIZZO I. 2006. Wetlands in the Venetian Po Plain (northeastern Italy) during the Last Glacial Maximum: Interplay between vegetation, hydrology and sedimentary environment. Rev. Palaeobot. Palynol., 141: 53-81.Google Scholar

  • MOORE P.D., WEBB J.A. & COLLINSON M.E. 1991. Pollen Analysis. Blackwell, Oxford.Google Scholar

  • NAGY E. 1965. The microplankton occurring in the Neogene of the Mecsek Mountains. Acta Bot. Acad. Sci. Hung., 11: 197-216.Google Scholar

  • NAGY E. 1969. Palynological elaborations of the Miocene layers of the Mecsek Mountains. Ann. Inst. Geol. Publ. Hung., 52(2): 237-650.Google Scholar

  • NAGY E. 1985. Sporomorphs of the Neogene in Hungary. Geol. Hung., Ser. Palaeont., 47: 1-470.Google Scholar

  • NAKOMAN E. 1966. Contribution à l’étude palynologique des formations tertiaires du Bassin de Thrace. Ann. Soc. Géol. Nord, 46: 65-107.Google Scholar

  • NICHOLS D.J., MATSUKAWA M. & ITO M. 2006. Palynology and age of some Cretaceous nonmarine deposits in Mongolia and China. Cret. Res., 27: 241-251.Google Scholar

  • PALS J.P., VAN GEEL B. & DELFOS A. 1980. Paleaoecological studies in the Klokkeweel bog near Hoogkarspel (prov. of Noord-Holland). Rev. Palaeobot. Palynol., 30: 371-418.Google Scholar

  • PIERCE S.T. 1976. Morphology of Schizosporis reticulatus Cookson and Dettmann 1959. Geoscience and Man, 15: 25-33.Google Scholar

  • PLANDEROVÁ E. 1990. Miocene microflora of Slovak Central Paratethys and its biostratigraphical significance. Dionýz Štúr Instytute of Geology, Bratislava.Google Scholar

  • POCOCK S.A.J. 1962. Microfloral analysis and age determination of strata at the Jurassic-Cretaceous Boundary in the Western Canada Plains. Palaeontographica, B, 111: 1-95.Google Scholar

  • POTONIÉ R. 1931. Pollenformen der miocänen Braunkohle. II. Sitzungsb. Ges. Natur. Freunde, 1-3: 24-29.Google Scholar

  • POTONIÉ R. 1934. Zur Mikrobotanik der eozänen Humodils des Geiseltals. Arb. Inst. Paläobot. Petrogr. Brennst., 4: 25-125.Google Scholar

  • POTONIÉ R. 1951a. Revision stratigraphisch wichtiger Sporomorphen des mitteleuropäischen Tertiärs Palaeontographica, B, 91(5/6): 131-151.Google Scholar

  • POTONIÉ R. 1951b. Pollen und Sporenformen als Leitfossilien des Tertiärs. Mikroskopie, 6(9/10): 272-283. POTONIÉ R. 1960. Synopsis der Gattungen der Sporae dispersae. III. Beih. Geol. Jahrb., 39: 1-189.Google Scholar

  • POTONIÉ R. & VENITZ H. 1934. Zur Mikrobotanik der miozänen Humodils der Niederrheinischen Bucht. Arb. Inst. Paläobot. Petrogr. Brennst., 5: 5-54.Google Scholar

  • POULÍČKOVÁ A., ŽIŽKA Z., HAŠLER P. & BENADA O. 2007. Zygnematalean zygospores: morphological features and use in species identification. Folia Microbiol., 52(2): 135-145.CrossrefGoogle Scholar

  • PUNT W., HOEN P.P., BLACKMORE S., NILSSON S. & Le THOMAS A. 2007. Glossary of pollen and spore terminology. Rev. Palaeobot. Palynol., 143: 1-81.Google Scholar

  • RAATZ G.V. 1937. Mikrobotanisch-stratigraphische Untersuchung der Braunkohle des Muskauer Bogens. Abh. Preuss. Geol. Landesan., Neue Folge, 183: 3-48.Google Scholar

  • RANDHAWA M.S. 1959. Zygnemaceae. Indian Council for Agricultural Research monographs on Algae. New Delhi, Indian Council for Agricultural Research.Google Scholar

  • REYNOLDS C.S., HUSZAR V., KRUK C., NASELLIFLORES L. & MELO S. 2002. Towards a functional classification of the freshwater phytoplankton. J. Plankton Res., 24: 417-428CrossrefGoogle Scholar

  • RICH F.J., KUEHN D. & DAVIES T.D. 1982. The paleoecological significance of Ovoidites. Palynology, 6: 19-28.CrossrefGoogle Scholar

  • ROCHE E. & SCHULER M. 1976. Analyse palynologique (pollen et spores) de diverse gisements du Tongrien de Belgique. Interprétation palaéoécologique et stratigraphique. Serv. Géol. Belgique. Profes. Paper, 11: 1-57.Google Scholar

  • ROMANOWICZ I. 1961. Analiza sporowo-pyłkowa osadów trzeciorzędowych z okolic Bolesławca i Zebrzydowej (summary: 393-409, Spore and pollen analysis of Tertiary sediments from the vicinity of Bolesławiec and Zebrzydowa). Biul. Inst. Geol., 158: 325-374.Google Scholar

  • ROTH L. & LORSCHEITTER M.L. 2008. Palinomorfos de um perfil sedimentar em uma turfeira do Parque Nacional dos Aparados da Serra, leste do Planalto do Rio Grande do Sul, Brasil. IHERINGIA, Sér. Bot., Porto Alegre, 63(1): 69-100.Google Scholar

  • RSHANIKOVA L.N. 1956. Petrography and sporepollen studies of the continental Tertiary deposits in Shilantshik basin (SE Turgai-Senke). AN Kas. SSR, Trudy Geol. Inst., Geol. Ser., 1: 1-114. (in Russian).Google Scholar

  • RUNDINA L.A. 1998. Zignemovye vodorosli Rossii (Chlorophyta: Zygnematophyceae, Zygnematales) (The Zygnematales of Russia (Chlorophyta: Zygnematophyceae)). Nuka. Sankt-Peterburg. (in Russian).Google Scholar

  • RŮŽIČKA J. 1977. Die Desmidiaceen Mitteleuropas. Band 1, Lieferung 1. E. Schweizerbart’sche Verlagsbuchhandlung. Stuttgart.Google Scholar

  • SCAFATI L., MELENDI D.L. & VOLKHEIMER W. 2009. A Danian subtropical lacustrine palynobiota from South America (Bororó Formation, San Jorge Basin, Patagonia - Argentina). Geologica Acta, 7(1-2): 35-61.Google Scholar

  • SHU J.-W., WANG W.-M., LEOPOLD E.B., WANG J.-S. & YIN D.-S. 2008. Pollen stratigraphy of coal-bearing deposits in the Neogene Jidong Basin, Heilongjiang Province, NE China: New insights on palaeoenvironment and age. Rev. Palaeobot. Palynol., 148: 163-183.Google Scholar

  • SIMONS J., VAN BEEM A.P. & DE VRIES P.J.R. 1982. Structure and chemical composition of the spore wall in Spirogyra (Zygnemataceae, Chlorophyceae). Acta Bot. Neerl., 31(5/6): 359-370.Google Scholar

  • SŁODKOWSKA B. 2009. Palynology of the Palaeogene and Neogene from the Warmia and Mazury areas (NE Poland). Geologos, 15(3-4): 219-234.Google Scholar

  • SONG Z. 1988. Late Cenozoic palyno-flora from Zhaotong, Yunnan. Mem. Nanjing Inst. Geol. & Palaeont., Acad. Sinica, 24: 1-108 (in Chinese with English summary).Google Scholar

  • SONG Z. & LIU G. 1982. Early Tertiary palynoflora and its significance of paleogeography from northern and eastern Xizang. Palaeontology of Xizang, 5: 165-190.Google Scholar

  • SONG Z., GUAN X., LI Z., ZHENG Y., WANG W. & HU Z. 1985. A research on Cenozoic palynology of the Longjing structural area in the shelf basin of the East China Sea (Donghai) region. Anhui Science and Technology Publishing House (in Chinese with English summary).Google Scholar

  • SONTAG E. 1966. Mikrobotanische (palynologische) Untersuchungen am 2. Niederlausitzer Flözhorizont. Geologie, 15. Beihefte, 54: 1-141.Google Scholar

  • SPALDING B.B.C. & LORSCHEITTER M.L. 2009. Palinologia de sedimentos da turfeira do Banhado Amarelo, Săo Francisco de Paula, Rio Grande do Sul, Brasil. Fungos e criptógamas. Hoehnea, 36(2): 219-232.Google Scholar

  • SRIVASTAVA S.K. 1984. Genus Sigmopollis from the Maastrichtian Scollard Formation, Alberta (Canada), and its algal affinity. Pollen et Spores, 26(3-4): 519-530.Google Scholar

  • STANLEY E.A. 1965. Upper Cretaceous and Paleocene plant microfossils and Paleocene dinoflagellates and hystrichosphaerids from northwestern South Dakota. Bull. Am. Paleont., 49(222): 179-384.Google Scholar

  • STEBBINS G.L. & HILL G.J.C. 1980. Did multicellular plants invade the land? The American Naturalist, 115(3): 342-353.Google Scholar

  • STEFANOVA, M., IVANOV, D., YANEVA N., MARINOV S.P., GRASSET L. & AMBLČS A., 2008. Palaeoenvironment assessment of Pliocene Lom lignite (Bulgaria) from bitumen analysis and preparative off line thermochemolysis. Org. Geochem. 39: 1589-1605.CrossrefGoogle Scholar

  • STUCHLIK L. 1964. Pollen analysis of the Miocene deposits at Rypin. Acta Palaeobot., 5(2): 1-113.Google Scholar

  • SZULC J. & WOROBIEC E. 2012. Neogene karst sinkhole and its deposits from Górażdże Quarry, Upper Silesia - archive for palaeoenvironmental reconstructions. Ann. Soc. Geol. Pol., 82(4): 371-385.Google Scholar

  • TAKAHASHI K. & JUX U. 1982. Sporomorphen aus dem Paläogen des bergischen Landes (West- Deutschland). Bull. Fac. Liberal Arts, Nagas. Univ., Natur. Sci., 23(1): 23-134.Google Scholar

  • TAPPAN H. 1980. The paleobiology of plant Protists. W.H. Freeman and Company, San Francisco.Google Scholar

  • TELL G. & ZAMALOA M.C. 2004. A Miocene algal assemblage dominated by Pediastrum leonensis n. sp. (Chlorophyceae) from Patagonia, Argentina: paleoenvironmental implications. J. Paleolimnol. 32: 247-254.CrossrefGoogle Scholar

  • TESTA M., GERBAUDO S. & ANDRI E. 2001. Data report: Botryococcus colonies in Miocene sediments in the western Woodlark Basin, southwest Pacific (ODP Leg 180). In: Huchon P., Taylor B. & Klaus A. (eds), Proceedings of the Ocean Drilling Program, Scientific Results, 180: 1-6 (online http://www-odp.tamu.edu/publications/180_SR/VOLUME/CHAPTERS/ .PDF).Google Scholar

  • THIERGART F. 1937. Die Pollenflora der Niederlausitzer Braunkohle, besonders im Profil der Grube Marga bei Senftenberg. Jahrb. Preus. Geol. Landesan., 58: 282-351.Google Scholar

  • THOMSON P.W. & PFLUG H. 1953. Pollen und Sporen des mitteleuropäischen Tertiärs. Palaeontographica, B, 94(1-4): 1-138.Google Scholar

  • TIWARI R.S. & NAVALE G.K.B. 1967. Pollen and spore assemblage in some coals of Brazil. Pollen et Spores, 9: 583-605.Google Scholar

  • TRAN DINH NGHIA 1974. Palynological investigation of Neogene deposits in Nowy Targ - Orava Basin (West Carpathians, Poland). Acta Palaeobot., 11(2): 45-81.Google Scholar

  • TRANSEAU E.N. 1951. The Zygnemataceae (freshwater conjugate algae) with keys for the identification of genera and species, and seven hundred eighty-nine illustrations. Columbus: The Ohio State University Press.Google Scholar

  • VAN BERGEN P.F., COLLINSON M.E., BRIGGS D.E.G., DE LEEUW J.W., SCOTT A.C., EVERSHED R.P. & FINCH P. 1995. Resistant biomacromolecules in the fossil record. Acta Bot. Neerl., 44: 319-345.CrossrefGoogle Scholar

  • VAN DER WIEL A.M. 1982. A palaeoecological study of a section from the foot of the Hazendonk (Zuid- Holland, The Netherlands), based on the analysis of pollen, spores and microscopic plant remains. Rev. Palaeobot. Palynol., 38: 35-90.Google Scholar

  • VAN GEEL B. 1976. Fossil spores of Zygnemataceae in ditches of a prehistoric settlement in Hoogkarspel (The Netherlands). Rev. Palaeobot. Palynol., 22: 337-344.Google Scholar

  • VAN GEEL B. 1978. A palaeoecological study of Holocene peat bog sections in Germany and The Netherlands. Rev. Palaeobot. Palynol., 25: 1-120.Google Scholar

  • VAN GEEL B. 1979. Preliminary report on the history of Zygnemataceae and the use of their spores as ecological markers. IV Int. Palynol. Conf., Lucknow (1976-77), 1: 467-469.Google Scholar

  • VAN GEEL B. 2001. Non-pollen palynomorphs: 99-119. In: J.P. Smol, H.J.B. Birks & W.M. Last (eds), Tacking environmental change using lake sediments. Volume 3: Terrestrial, algal, and siliceous indicators. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar

  • VAN GEEL B. & GRENFELL H.R. 1996. Chapter 7A. Spores of Zygnemataceae: 173-179. In: Jansonius J. & McGregor D.C. (eds), Palynology: principles and applications. American Association of Stratigraphic Palynologists Foundation, Vol. 1.Google Scholar

  • VAN GEEL B. & VAN DER HAMMEN T. 1978. Zygnemataceae in Quaternary Colombian sediments. Rev. Palaeobot. Palynol., 25: 377-392.Google Scholar

  • VAN GEEL B., BOHNCKE S.J.P. & DEE H. 1981. A palaeoecological study of an upper Late Glacial and Holocene sequence from “De Borchert”, The Netherlands. Rev. Palaeobot. Palynol., 31: 367-448.Google Scholar

  • VAN GEEL B., COOPE G.R. & VAN DER HAMMEN T. 1989. Palaeoecology and stratigraphy of the Lateglacial type section at Usselo (The Netherlands). Rev. Palaeobot. Palynol., 60: 25-129.Google Scholar

  • VAN GEEL B., HALLEWAS D.P. & PALS J.P. 1983. A Late Holocene deposits under the Westfriese Zeedijk near Enkhuizen (Prov. Noord-Holland, The Netherlands): palaeoecological and archaeological aspects. Rev. Palaeobot. Palynol., 38: 269-335.Google Scholar

  • VAZQUEZ-DUHALT R. & ARREDONDO-VEGA B.O. 1991. Haloadaptation of the green alga Botryococcus braunii (race A). Phytochemistry, 30(9): 2919-2926.CrossrefGoogle Scholar

  • VENKATACHALA B.S. & KAR R.K. 1968. Pilospora gen. nov., a new fossil pollen genus from the Mesozoic rocks of Kutch, W. India. Curr. Sci., 37(15): 442-443.Google Scholar

  • VERSTEEGH G.J.M. & BLOKKER P. 2004. Resistant macromolecules of extant and fossil microalgae. Phycol. Res., 52(4): 325-339.Google Scholar

  • WEYLAND H. & PFLUG H.D. 1957. Die Pflanzenreste der pliozänen Braunkohle von Ptolomais in Nordgriechenland I. Palaeontographica, B, 102: 96-109.Google Scholar

  • WOROBIEC E. 2009. Middle Miocene palynoflora of the Legnica lignite deposit complex, Lower Silesia, Poland. Acta Palaeobot., 49(1): 5-133.Google Scholar

  • WOROBIEC E. 2010. Late Miocene freshwater phytoplankton from Józefina (Poland). Micropaleontology, 56(6): 517-537.Google Scholar

  • WOROBIEC E. 2011. Middle Miocene aquatic and wetland vegetation of the paleosinkhole at Tarnów Opolski, SW Poland. J. Paleolimnol., 45(3): 311-322.CrossrefGoogle Scholar

  • WOROBIEC E. 2012. Microfossils related to green algae (Chlorophyta) in Upper Miocene deposits from the Józefina borehole, Kraków-Silesia Upland, Poland: 185-194. In: Wołowski K., Kaczmarska I., Ehrman J. & Wojtal A.Z. (eds), Phycological Reports: Current advances in algal taxonomy and its applications: phylogenetic, ecological and applied perspective. Institute of Botany Polish Academy of Sciences, Kraków.Google Scholar

  • WOROBIEC E. (in press). The palynology of Late Miocene sinkhole deposits from Upper Silesia, Poland. Rev. Palaeobot. Palynol.Google Scholar

  • WOROBIEC E. & GEDL P. 2010. Spore-pollen and phytoplankton analysis of the Upper Miocene deposits from Józefina (Kraków-Silesia Upland, Poland). Geol. Quart., 54(1): 41-54.Google Scholar

  • WOROBIEC E. & SZULC J. 2010a. Analiza palinologiczna mioceńskich wypełnień lejów krasowych w Tarnowie Opolskim na Wyżynie Śląskiej - wyniki wstępne (summary: Palynological analysis of Miocene infill of karst sinkholes at Tarnów Opolski, Upper Silesian Upland - a preliminary report). Prz. Geol., 58(12): 1176-1181.Google Scholar

  • WOROBIEC E. & SZULC J. 2010b. A Middle Miocene palynoflora from sinkhole deposits from Upper Silesia, Poland and its palaeoenvironmental context. Rev. Palaeobot. Palynol., 163(1-2): 1-10.Google Scholar

  • WOROBIEC E. & WOROBIEC G. 2008. Kopalne zygospory glonów Zygnemataceae (Chlorophyta) z osadów górnego miocenu KWB „Bełchatów” (summary: Fossil zygospores of Zygnemataceae algae (Chlorophyta) from the Upper Miocene of the Bełchatów Lignite Mine). Prz. Geol., 56(11): 1000-1004.Google Scholar

  • WOROBIEC E., LIU Y.-S. & ZAVADA M.S. 2013. Palaeoenvironment of late Neogene lacustrine sediments at the Gray Fossil Site, Tennessee, USA. Ann. Soc. Geol. Pol., 83(1): 51-63.Google Scholar

  • YI S. 1997. Zygnematacean zygospores and other freshwater algae from the Upper Cretaceous of the Yellow Sea Basin, southwest coast of Korea. Cret. Res., 18: 515-544.Google Scholar

  • ZAMALOA M.C. 1996. Asociación de zigósporas de Zygnemataceae (Chlorophyta) en el Terciario medio de Tierra del Fuego, Argentina. Ameghiniana (Rev. Asoc. Paleontol. Argent.), 33(2): 179-184.Google Scholar

  • ZAMALOA M.C. & TELL G. 2005. The fossil record of freshwater micro-algae Pediastrum Meyen (Chlorophyceae) in southern South America. J. Paleolimnol., 34: 433-444.CrossrefGoogle Scholar

  • ZAVATTIERI A.M. & PRÁMPARO M.B. 2006. Freshwater algae from the Upper Triassic Cuyana Basin of Argentina: palaeoenvironmental implications. Palaeontology, 49(6): 1185-1209.CrossrefGoogle Scholar

  • ZIEMBIŃSKA M. & NIKLEWSKI J. 1966. Stratygrafia i paralelizacja pokładów węgla brunatnego złoża Ścinawa na podstawie analizy sporowo-pyłkowej (summary: Stratigraphy and correlation of brown coal beds in the Ścinawa deposits on the basis of spore-pollen anlysis). Biul. Inst. Geol., 202: 27-58.Google Scholar

  • ZIPPI P.A. 1998. Freshwater algae from the Mattagami Formation (Albian), Ontario: Paleoecology, botanical affinities, and systematic taxonomy. Micropaleontology, 44 suppl. 1: 1-78. CrossrefGoogle Scholar

About the article

Received: 2014-02-14

Accepted: 2014-04-23

Published Online: 2014-06-17

Published in Print: 2014-06-01

Citation Information: Acta Palaeobotanica, Volume 54, Issue 1, Pages 113–157, ISSN (Online) 2082-0259, DOI: https://doi.org/10.2478/acpa-2014-0005.

Export Citation

© by Elżbieta Worobiec. This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in