Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Palaeobotanica

The Journal of W. Szafer Institute of Botany of Polish Academy of Sciences

2 Issues per year


CiteScore 2016: 1.17

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 0.513

Open Access
Online
ISSN
2082-0259
See all formats and pricing
More options …

Paleocene wind-dispersed fruits and seeds from Colombia and their implications for early Neotropical rainforests

Fabiany Herrera
  • Department of Biology, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611-7800, USA
  • Chicago Botanic Garden, 1000 Lake Cook Road, Glencoe, Illinois 60022, USA
  • Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Balboa, Ancón, Panamá
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Steven R. Manchester / Mónica R. Carvalho
  • Smithsonian Tropical Research Institute, Apartado Postal, 0843-03092, Balboa, Ancón, Panamá
  • Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Carlos Jaramillo / Scott L. Wing
Published Online: 2014-12-20 | DOI: https://doi.org/10.2478/acpa-2014-0008

Abstract

Extant Neotropical rainforests are well known for their remarkable diversity of fruit and seed types. Biotic agents disperse most of these disseminules, whereas wind dispersal is less common. Although wind-dispersed fruits and seeds are greatly overshadowed in closed rainforests, many important families in the Neotropics (e.g., Bignoniaceae, Fabaceae, Malvaceae, Orchidaceae, Sapindaceae) show numerous morphological adaptations for anemochory (i.e. wings, accessory hairs). Most of these living groups have high to moderate levels of plant diversity in the upper levels of the canopy. Little is known about the fossil record of wind-dispersed fruits and seeds in the Neotropics. Six new species of disseminules with varied adaptations for wind dispersal are documented here. These fossils, representing extinct genera of Ulmaceae, Malvaceae, and some uncertain families, indicate that wind-dispersed fruit and seed syndromes were already common in the Neotropics by the Paleocene, coinciding with the early development of multistratal rainforests. Although the major families known to include most of the wind-dispersed disseminules in extant rainforests are still missing from the Paleogene fossil record of South and Central America, the new fossils imply that anemochory was a relatively important product and/or mechanism of plant evolution and diversification in early Neotropical rainforests.

Keywords: Fossils; Malvaceae; Ulmaceae; Neotropics; Paleocene; wind dispersal syndromes

References

  • ARDITTI J. & GHANI A.K.A. 2000. Tansley Review No. 110. Numerical and Physical Properties of orchid seeds and their biological implications. New Phytol., 145: 367-421.Google Scholar

  • AUGSPURGER C. 1986. Morphology and dispersal potential of wind-dispersed diaspores of Neotropical trees. Amer. J. Bot., 73: 353-363.Google Scholar

  • BAUM D.A., SMITH S.D., YEN A., ALVERSON W.S., NYFFELER R., WHITLOCK B.A. & OLDHAM R.L. 2004. Phylogenetic relationships of Malvatheca (Bombacoideae and Malvoideae; Malvaceae sensu lato) as inferred from plastid DNA sequences. Amer. J. Bot., 91: 1863-1871.Google Scholar

  • BAYONA G., CORTES M., JARAMILLO C., OJEDA G., ARISTIZABAL J.J. & REYES A. 2008. An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia. Bull. Geol. Soc. Amer., 120: 1171-1197.Google Scholar

  • BAYONA G., MONTENEGRO O., CARDONA A., JARAMILLO C., LAMUS F., MORÓN S., QUIROZ L., ET AL. 2012. Estratigrafía, procedencia, subsidencia y exhumación de las unidades Paleógenas en el Sinclinal de Usme, sur de la zona axial de la Cordillera Oriental. Geol. Colomb., 35: 5-35.Google Scholar

  • BERRY E.W. 1929. Tertiary Plants from Colombia, South America. Proc. Natl. Acad. Sci. U.S.A., 75: 1-12Google Scholar

  • BRITTON N.L. 1893. Note on a collection of Tertiary fossil plants from Potosi, Bolivia. Trans. Am. Inst. Min., 21: 250-257.Google Scholar

  • BROWN R.W. 1946. Alterations in some fossil and living floras. J. Wash. Acad. Sc., 36: 344-355.Google Scholar

  • BURGE D.O. & MANCHESTER S.R. 2008. Fruit morphology, fossil history, and biogeography of Paliurus (Rhamnaceae). Int. J. Pl. Sci., 169: 1066-1085.Google Scholar

  • BURNHAM R.J. 1986. Foliar morphological analysis of the Ulmoideae (Ulmaceae) from the early Tertiary of western North America. Palaeontographica, B, 201: 135-167.Google Scholar

  • BURNHAM R.J. 1995. A new species of winged fruit from the Miocene of Ecuador: Tipuana ecuatoriana (Leguminosae). Amer. J. Bot., 82: 1599-1607.Google Scholar

  • BURNHAM R.J. & CARRANCO N.L. 2004. Miocene winged fruits of Loxopterygium (Anacardiaceae) from the Ecuadorian Andes. Amer. J. Bot., 91: 1767-1773.Google Scholar

  • BURNHAM R.J. & JOHNSON K.R. 2004. South American palaeobotany and the origins of Neotropical rainforests. Philos. Trans. Roy. Soc. London B., 359: 1595-1610.Google Scholar

  • CALL V.C. & DILCHER D.L. 1997. The fossil record of Eucommia (Eucommiaceae) in North America. Amer. J. Bot., 84: 798-814.Google Scholar

  • CARVALHO M.R., HERRERA F.A., JARAMILLO C.A., WING S.L. & CALLEJAS R. 2011. Paleocene Malvaceae from Northern South America and their biogeographical implications. Amer. J. Bot., 98: 1337-1355.Google Scholar

  • CORREA E., JARAMILLO C., MANCHESTER S.R. & GUTIERREZ M. 2010. A fruit and leaves of rhamnaceous affinities from the Late Cretaceous (Maastrichtian) of Colombia. Amer. J. Bot., 97: 71-79.PubMedGoogle Scholar

  • DALLWITZ M.J., PAINE T.A. & ZURCHER E.J. 2000. Principles of interactive keys. Available from: http://deltaintkey.com. Accessed January 2013.Google Scholar

  • DENK T. & DILLHOFF R.M. 2005. Ulmus leaves and fruits from the Early-Middle Eocene of northwestern North America: systematics and implications for character evolution within Ulmaceae. Canad. J. Bot., 83: 1663-1681.Google Scholar

  • DILCHER D.L., POTTER F.W. & CREPET W.L. 1976. Investigations of angiosperms from the Eocene of North America: Juglandaceous winged fruits. Amer. J. Bot., 63: 532-544.Google Scholar

  • DORIA G., JARAMILLO C.A. & HERRERA F.A. 2008. Menispermaceae from the Cerrejón Formation, middle to late Paleocene, Colombia. Amer. J. Bot., 95: 954-973.Google Scholar

  • ENGLEHARDT H. 1895. Über neue Tertiärpflanzen Süd Amerikas. Abhandlungen der Abh. Senckenberg. Naturf. Ges., 19: 1-47.Google Scholar

  • ERIKSSON O. 2008. Evolution of seed size and biotic seed dispersal in angiosperms: paleoecological and neoecological evidence. Int. J. Pl. Sci., 169: 863-870.Google Scholar

  • ERIKSSON O. & KAINULAINEN K. 2011. The evolutionary ecology of dust seeds. Perspect. Pl. Ecol. Evol. Syst., 13: 73-87.CrossrefGoogle Scholar

  • ERIKSSON O., FRIIS E.M. & LÖFGREN P. 2000. Seed size, fruit size, and dispersal systems in angiosperms from the Early Cretaceous to the Late Tertiary. Amer. Naturalist., 156: 47-58.Google Scholar

  • FERNÁNDEZ-ALONSO J.L. 2003. Bombacaceae neotropicae novae vel minus cognitae VI. Novedades en los géneros Cavanillesia, Eriotheca, Matisia y Pachira. Revista Acad. Colomb. Ci. Exact., 27: 25-37.Google Scholar

  • GAUTIER-HION A., DUPLANTIER J. M., QURIS R., FEER F., SOURD C., DECOUX J.-P., DUBOST G, ET AL. 1985. Fruit characters as a basis of fruit choice and seed dispersal in a tropical forest vertebrate community. Oecologia, 65: 324-337.Google Scholar

  • GENTRY A.H. 1993. Diversity and floristic composition of lowland tropical forest in Africa and South America: 500-547. In: Goldblatt P. (eds), Biological relationships between Africa and South America, Yale University Press, New Haven, USA.Google Scholar

  • GRIZ L.M.S. & MACHADO I.C. S. 2001. Fruiting phenology and seed dispersal syndromes in Caatinga, a tropical dry forest in the northeast of Brazil. J. Trop. Ecol., 17: 303-321.Google Scholar

  • HABLY L. & THIÉBAUT M. 2002. Revision of Cedrelospermum (Ulmaceae) fruits and leaves from the Tertiary of Hungary and France. Palaeontographica, B, 262: 71-90.Google Scholar

  • HERRERA C.M. 1989. Seed dispersal by animals: A role in angiosperm diversification? Amer. Naturalist., 133: 309-322.Google Scholar

  • HERRERA F., MANCHESTER S.R., HOOT S.B., WEFFERLING K.M., CARVALHO M.R. & C. JARAMILLO. 2011. Phytogeographic Implications of fossil endocarps of Menispermaceae from the Paleocene of Colombia. Amer. J. Bot., 98: 2004-2017.PubMedGoogle Scholar

  • HICKEY L.H. 1977. Stratigraphy and paleobotany of the Golden Valley Formation (early Tertiary) of western North Dakota. Geol. Soc. Amer. Mem., 150: 1-183.Google Scholar

  • HLADIK A. & MIQUEL S. 1990. Seedling types and plant establishment in an African rain forest: 261-281. In: Bawa K. S., Hadley M. (eds), Reproductive ecology of tropical forest plants. The Parthenon Publishing Group, Paris, France.Google Scholar

  • HOWE H.F. & SMALLWOOD J. 1982. Ecology of seed dispersal. Annu. Rev. Ecol. Evol. S., 13: 221-228. HUERTAS G. 1960. De la flora fossil de la Sabana. Boletín de Geología, 5: 53-57.Google Scholar

  • JANSON C.H. 1983. Adaptation of fruit morphology to dispersal agents in a Neotropical forest. Science, 219: 187-189.Google Scholar

  • JANSON C.H. 1992. Measuring evolutionary constraints: A Markov model for phylogenetic transitions among seed dispersal syndromes. Evolution, 46: 136-158.CrossrefGoogle Scholar

  • JARA-GUERRERO A., DE LA CRUZ M. & MÉNDEZ M. 2011. Seed dispersal spectrum of woody species in south Ecuadorian dry forests: Environmental correlates and the effect of considering species abundance. Biotropica, 43: 722-730.Google Scholar

  • JARAMILLO C. & DILCHER D.L. 2001. Middle Paleogene palynology of central Colombia, South America: A study of pollen and spores from tropical latitudes. Palaeontogr. Abt. B, 285: 87-213.Google Scholar

  • JARAMILLO C., RUEDA M. & TORRES V. 2011. A palynological zonation for the Cenozoic of the llanos foothills of Colombia. Palynology, 35: 46-84.Google Scholar

  • JARAMILLO C., BAYONA G., PARDO-TRUJILLO A., RUEDA M., TORRES V., HARRINGTON G.J. & MORA G. 2007. The palynology of the Cerrejón Formation (upper Paleocene) of northern Colombia. Palynology, 31: 153-189.Google Scholar

  • KEAY R.W.J. 1957. Wind-dispersed species in a Nigerian forest. J. Ecol., 45: 471-478.CrossrefGoogle Scholar

  • KOVAR-EDER J., KNÖRR U.C. & MAZOUCH P. 2012. Fruit ecology of Eocene and Neogene plant assemblages in Europe: Tracing shifts in dispersal syndromes. Palaios, 27: 887-903.Google Scholar

  • KOVAR-EDER J., KVAČEK Z. & STRÖBITZER-HERMANN M. 2004. The Miocene Flora of Parschlug (Styria, Austria) - Revision and Synthesis. Ann. Naturhist. Mus. Wien., 105: 45-159.Google Scholar

  • KVAČEK Z., MANCHESTER S.R. & AKHMETIEV M.A. 2005. Review of the fossil history of Craigia (Malvaceae s.l.) in the northern hemisphere based on fruits and co-occurring foliage: 114-140. In: Herman B. (eds), Modern problems of Palaeofloristics, Palaeophytogeography, and Phytostratigraphy. GEOS, Moscow.Google Scholar

  • KVAČEK Z., MANUM S.B. & BOULTER M.C. 1994. Angiosperms from the Paleogene of Spitsbergen, including an unfinished work by A.G. Nathorst. Palaeontographica, B, 232: 103-128.Google Scholar

  • LOHMANN L.G., BELL C.D., CALIÓ M.F. & WINKWORTH R.C. 2013. Pattern and timing of biogeographical history in the Neotropical tribe Bignonieae (Bignoniaceae). Bot. J. Linn. Soc., 171: 154-170.Google Scholar

  • LÓPEZ M. & RAMÍREZ N. 1989. Características morfológicas de frutos y semillas y su relación con los síndromes de dispersión de una comunidad arbustiva en la Guayana Venezolana. Ecologia, 40: 354-371.Google Scholar

  • LORTS C.M., BRIGGEMAN T. & SANG T. 2008. Evolution of fruit types and seed dispersal: A phylogenetic and ecological snapshot. J. Syst. Evol., 46: 396-404.Google Scholar

  • MAGALLÓN-PUEBLA S. & CEVALLOS-FERRIZ S. R.S. 1994. Latest occurrence of the extinct genus Cedrelospermum (Ulmaceae) in North America: Cedrelospermum manchesteri from Mexico. Rev.Google Scholar

  • Palaeobot. Palynol., 81: 115-128.Google Scholar

  • MANCHESTER S.R. 1987. Extinct ulmaceous fruits from the Tertiary of Europe and western North America. Rev. Palaeobot. Palynol., 52: 119-112.Google Scholar

  • MANCHESTER S.R. 1989A. Systematics and fossil history of the Ulmaceae: 221-252. In: Crane P.R., Blackmore S., (eds), Evolution, Systematics, and fossil history of the Hamamelidae, vol. 2: Higher Hamamelidae. Systematics Association Special vol. 40B, Clarendon Press, Oxford.Google Scholar

  • MANCHESTER S.R. 1989B. Attached reproductive and vegetative remains of the extinct American- European genus Cedrelospermum (Ulmaceae) from the early Tertiary of Utah and Colorado, USA. Amer. J. Bot., 76: 256-276.Google Scholar

  • MANCHESTER S.R. & DONOGHUE M. 1995. Winged fruits of Linnaeeae (Caprifoliaceae) in the Tertiary of western North America: Diplodipelta gen. nov. Int. J. Pl. Sci., 156: 709-722.Google Scholar

  • MANCHESTER S.R. & O’LEARY E. 2010. Phylogenetic Distribution and Identification of Fin-winged Fruits. Bot. Rev., 76: 1-82.CrossrefGoogle Scholar

  • MANCHESTER S.R. & TIFFNEY B.H. 2001. Integration of paleobotanical and neobotanical data in the assessment of phytogeographic history of holarctic angiosperm clades. Int. J. Pl. Sci., 162: S19-S27.Google Scholar

  • MARTINEZ C., JARAMILLO C. & CREPET W. 2014. Neotropical Cretaceous-Paleogene fossil macrofloras and its affinities with temperate America. Abstract of the 10th North American Paleontological Convention, Gainesville, USA, Vol. 13.Google Scholar

  • MINAKI M., NOSHIRO S. & SUZUKI M. 1988. Hemiptelea mikii sp. nov. (Ulmaceae), Fossil Fruits and Woods from the Pleistocene of Central Japan. Bot. Mag. (Tokyo), 101: 337-351.CrossrefGoogle Scholar

  • MIRLE C. & BURNHAM R.J. 1999. Identification of asymmetrically winged samaras from the Western Hemisphere. Brittonia, 51: 1-14.CrossrefGoogle Scholar

  • MORI S.A. & BROWN J. L. 1994. Report on wind dispersal in a lowland moist forest in central French Guiana. Brittonia, 46: 105-125.CrossrefGoogle Scholar

  • MULLER J. 1981. Fossil pollen records of extant angiosperms. Bot. Rev., 47: 1-142.CrossrefGoogle Scholar

  • NEUBIG K., HERRERA F., MANCHESTER S.R. & ABBOTT J.R. 2012. Fossils, biogeography and dates in an expanded phylogeny of Ulmaceae. Botany 2012: Annual Meeting of the Botanical Society of America in Columbus, Ohio, USA.Google Scholar

  • NYFFELER R., BAYER C., ALVERSON W.S., YEN A., WHITLOCK B.A., CHASE M.W. & BAUM D.A. 2005. Phylogenetic analysis of the Malvadendrina clade (Malvaceae s.l.) based on plastid DNA sequences. Org. Divers. Evol., 5: 109-123. CrossrefGoogle Scholar

  • OLMSTEAD R.G. 2013. Phylogeny and biogeography in Solanaceae, Verbenaceae and Bignoniaceae: a comparison of continental and intercontinental diversification patterns. Bot. J. Linn. Soc., 171: 80-102.Google Scholar

  • PAN A.D., CURRANO E.D., JACOBS B.F., FESEHA M., TABOR N. & HERENDEEN P.S. 2012. Fossil Newtonia (Fabaceae: Mimoseae) seeds from the early Miocene (22-21 Ma) Mush Valley in Ethiopia. Int. J. Pl. Sci., 173: 290-296.Google Scholar

  • PELL S.K., MITCHELL J.D., MILLER A.J. & LOBOVA T.A. 2011. Anacardiaceae: 7-50. In: Kubitzki K. (eds), Flowering Plants. Eudicots. The Families and Genera of Vascular Plants vol. 10, Springer, New York.Google Scholar

  • PHILLIPS O., JAMES M. & GENTRY A. 2002. Global patterns of plant diversity: Alwyn H. Gentry’s Forest Transect Data Set. Missouri Botanical Garden Press, St. Louis. MO.Google Scholar

  • PRANCE G.T. 1978. Notes on the vegetation of Amazonia I. A preliminary note on the origin of the open white sand campinas of the lower Rio Negro. Brittonia, 30: 60-63.Google Scholar

  • RAMÍREZ R.S., GRAVENDEEL B., SINGER R.B., MARSHALL C.R. & PIERCE N.E. 2007. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature, 448: 1042-1045.Google Scholar

  • RAPINI A., VAN DEN BERG C. & LIEDE-SCHUMANN S. 2007. Diversification of Asclepiadoideae (Apocynaceae) in the new world. Ann. Missouri Bot. Gard., 94: 407-422.Google Scholar

  • SINHA A. & DAVIDAR P. 1992. Seed dispersal ecology of a wind dispersed rain forest tree in the Western Ghats, India. Biotropica, 24: 519-526.CrossrefGoogle Scholar

  • SMITH N., MORI S.A., HENDERSON A., STEVENSON D. Wm., HEALD S.V. 2004. Flowering Plants of the Neotropics. Princeton University Press, Princeton, New Jersey.Google Scholar

  • STULL G.W., HERRERA F., MANCHESTER S.R., JARAMILLO C. & TIFFNEY B.H. 2012. Fruits of an “Old World” tribe (Phytocreneae; Icacinaceae) from the Paleogene of North and South America. Syst. Bot., 37: 784-794.CrossrefGoogle Scholar

  • STULTS D.Z. & AXSMITH B.J. 2011. First Macrofossil record of Begonia (Begoniaceae). Amer. J. Bot., 98: 150-153.PubMedGoogle Scholar

  • TAKAHASHI M. 1989. Pollen morphology of Celtidaceae and Ulmaceae: a reinvestigation: 253-265. In: Crane P.R., Blackmore S., (eds), Evolution, Systematics, and fossil history of the Hamamelidae, vol. 2: Higher Hamamelidae. Systematics Association Special vol. 40B, Clarendon Press, Oxford.Google Scholar

  • TIFFNEY B.H. 1984. Seed size, dispersal syndromes, and the rise of the angiosperms: evidence and hypothesis. Ann. Missouri Bot. Gard., 71: 551-576.Google Scholar

  • TODZIA C.A. 1989. A revision of Ampelocera (Ulmaceae). Ann. Missouri Bot. Gard., 76: 1087-1102.Google Scholar

  • TODZIA C.A. 1992. A reevaluation of the genus Phyllostylon (Ulmaceae). SIDA., 15: 263-270.Google Scholar

  • VAN DER PIJL L. 1969. Principles of dispersal in higher plants. Springer Verlag, Berlin - Heidelberg - New York.Google Scholar

  • WANG Y. & MANCHESTER S.R. 2000. Chaneya, a new genus of winged fruit from the Tertiary of North America and eastern Asia. Int. J. Pl. Sci., 161: 167-178.Google Scholar

  • WANG Q., MANCHESTER S.R., LI C. & GENG B. 2010. Fruits and leaves of Ulmus from the Paleogene of Fushun, northeastern China. Int. J. Pl. Sci., 171: 221-226.Google Scholar

  • WIEGREFE S.J., SYTSMA K. J. & GURIES R.P. 1994. Phylogeny of elms (Ulmus, Ulmaceae): molecular evidence for a sectional classification. Syst. Bot., 19: 590-612.CrossrefGoogle Scholar

  • WILDE V. & MANCHESTER S.R. 2003. Cedrelospermum fruits (Ulmaceae) and related leaves from the Middle Eocene of Messel (Hesse, Germany). Cour. Forsch.-Inst. Senckenberg, 241: 147-153.Google Scholar

  • WING S.L. & BOUCHER L.D. 1998. Ecological aspects of the Cretaceous flowering plant radiation. Annu. Rev. Earth Pl. Sc., 26: 379-421.CrossrefGoogle Scholar

  • WING S.L., HERRERA F., JARAMILLO C., GÓMEZNAVARRO C., WILF P. & LABANDEIRA C.C. 2009. Late Paleocene fossils from the Cerrejón Formation, Colombia, are the earliest record of Neotropical Rainforest. Proc. Natl. Acad. Sci. U.S.A., 106: 18627-18632.CrossrefGoogle Scholar

  • ZAVADA M.S. 1983. Pollen morphology of Ulmaceae. Grana, 22: 23-30.CrossrefGoogle Scholar

  • ZAVADA M.S. & KIM M. 1996. Phylogenetic analysis of Ulmaceae. Pl. Syst. Evol., 200: 13-20. Google Scholar

About the article

Received: 2014-05-24

Revised: 2014-09-18

Published Online: 2014-12-20

Published in Print: 2014-12-01


Citation Information: Acta Palaeobotanica, ISSN (Online) 2082-0259, DOI: https://doi.org/10.2478/acpa-2014-0008.

Export Citation

© by Fabiany Herrera. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jun-Ling Dong, Bai-Nian Sun, Teng Mao, Chun-Hui Liu, Xue-Lian Wang, Ming-Xuan Sun, Fu-Jun Ma, and Qiu-Jun Wang
Palaeogeography, Palaeoclimatology, Palaeoecology, 2017

Comments (0)

Please log in or register to comment.
Log in