Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Palaeobotanica

The Journal of W. Szafer Institute of Botany of Polish Academy of Sciences

2 Issues per year

CiteScore 2016: 1.17

SCImago Journal Rank (SJR) 2016: 0.524
Source Normalized Impact per Paper (SNIP) 2016: 0.513

Open Access
See all formats and pricing
More options …

The early Miocene flora of Güvem (Central Anatolia, Turkey): a window into early Neogene vegetation and environments in the Eastern Mediterranean

Thomas Denk / Tuncay H. Güner / Zlatko Kvaček / Johannes M. Bouchal
  • Department of Palaeobiology, Swedish Museum of Natural History, Stockholm, Sweden
  • Department of Palaeontology, University of Vienna, Vienna, Austria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-12-19 | DOI: https://doi.org/10.1515/acpa-2017-0011


The early Burdigalian (MN3) plant assemblage of the Güvem area (northwestern Central Anatolia) is preserved in lacustrine sediments of the Dereköy pyroclastics. Its age is well constrained by radiometric dates of basaltic rocks bracketing the pyroclastics, making the Güvem flora one of the extremely few precisely dated early Miocene floras in the Mediterranean region. The rich assemblage of impression fossils comprises ferns and fern allies (2 species), gymnosperms (12 spp.) and angiosperms (129 spp.). Ilex miodipyrena sp. nov. is described as a new fossil-species. The most diverse families in the assemblage are the Fagaceae with 12 taxa and the Fabaceae with 12 leaf morphotypes and one fruit taxon. Aquatic plants are represented by seven taxa, riparian (including palms) and swamp forest elements by >35 taxa, and lianas by three taxa (Smilax spp., Chaneya). The relatively large number of aquatic and riparian/swamp elements is congruent with the rich fish, amphibian and reptile record of the Güvem area. Another characteristic feature of the plant assemblage is the presence of various lobed leaves which show similarities with modern species of different families (e.g. Alangium, various Malvales). Trees and shrubs growing on well-drained soils and forming closed-canopy and open-canopy forests are the most diversified group (>70 taxa). In terms of number of specimens in the collection and based on field observations, by far the most abundant leaf fossils belong to evergreen oaks of Quercus drymeja and Q. mediterranea and to various types of foliage that cannot be assigned to a particular extant or extinct genus of Fagaceae. These sclerophyllous trees must have covered vast areas surrounding the wetlands that developed during the early Miocene in the Güvem Basin. Based on a recent reassessment of the ecology and taxonomic affinity of these trees, they are considered to reflect humid temperate climatic conditions but with a brief drier season during the winter months. These forests are more similar to the laurel forests of the southeastern United States and those stretching in a narrow belt south of the Himalayas to eastern central China. The large number of Fabaceae may indicate the presence of warm subtropical environments but this is difficult to assess, as they are known for having wide ecological ranges today and in the past. All in all, a larger part of the plant taxa point to forested vegetation. This is in agreement with previous palynological studies which detected only small amounts of herbaceous and grass pollen. Open patches of vegetation may have been restricted to river banks and to rocky areas in a volcanic landscape. The biogeographic patterns detected for the early Miocene of the Güvem assemblage are manifold; most taxa are widespread Northern Hemispheric elements. A substantial part of the species migrated from Asia into Europe during the (late) Paleogene and reached Anatolia during the early Miocene (Fagus, Paliurus, Chaneya, Ailanthus, Quercus kubinyii, Davallia haidingeri, Acer angustilobum, A. palaeosaccharinum). Fewer taxa may have been in Anatolia before they migrated to Europe (e.g. Nerium, Smilax miohavanensis, Quercus sosnowskyi). Finally, very few taxa are Anatolian endemics (e.g. Ilex miodipyrena).

Keywords: macrofossils; palaeobotany; palaeoenvironment; palaeobiogeography; Miocene; Turkey


  • ACKERLY D.D. 2004. Adaptation, niche conservatism, and convergence: comparative studies of leaf evolution in the California chaparral. Am. Nat., 16: 654–671.CrossrefGoogle Scholar

  • AKKEMIK Ü., TÜRKOĞLU N., POOLE I., ÇIÇEK I., KÖSE N. & GÜRGEN G. 2009. Woods of a Miocene petrified forest near Ankara, Turkey. Turk. J. Agric. For., 33: 89–97.Google Scholar

  • AKKEMIK Ü., ARSLAN M., POOLE I., TOSUN S., KÖSE N., KARLIOĞLU KILIÇ N. & AYDIN A. 2016. Silicified woods from two previously undescribed early Miocene forest sites near Seben, northwest Turkey. Rev. Palaeobot. Palynol., 235: 31–50.Google Scholar

  • ASH A., ELLIS B., HICKEY L.J., JOHNSON K., WILF P. & WING S. 1999. Manual of Leaf Architecture – morphological description and categorization of dicotyledonous and net-veined monocotyledonous angiosperms by Leaf Architecture Working Group. Smithsonian Institution, Washington.Google Scholar

  • BARRÓN E. & DIÉGUEZ C. 2001. Estudio macroflorístico del Mioceno Inferior lacustre de la cuenca de Rubielos de Mora (Teruel, España). Bol. Geol. Min., 112(2): 13–56.Google Scholar

  • BARRÓN E. & DIÉGUEZ C. 2005. Cuticular study of leaf compressions from the Late Miocene (Vallesian) diatomites of Cerdaña Basin (Eastern Pyrenees, Spain). N. Jb. Geol. Paläont. Abh., 237(1): 61–85.Google Scholar

  • BARRÓN E. & POSTIGO-MIJARRA J.M. 2011. Early Miocene fluvial-lacustrine and swamp vegetation of La Rinconada mine (Ribesalbes-Alcora basin, eastern Spain). Rev. Palaeobot. Palynol., 165(1–2): 11–26.Google Scholar

  • BARRÓN E., RIVAS-CARBALLO R., POSTIGOMIJARRA J.M., ALCALDE-OLIVARES C., VIEIRA M., CASTRO L., PAIS J. & VALLE-HERNÁNDEZ M. 2010. The Cenozoic vegetation of the Iberian Peninsula: a synthesis. Rev. Palaeobot. Palynol., 162(3): 382–402.Google Scholar

  • BERRY E.W. 1906. Living and Fossil Species of Comptonia. Am. Nat., 40: 485–524.CrossrefGoogle Scholar

  • BOUCHAL J.M., GRÍMSSON F., ZETTER R. & DENK T. 2016. The middle Miocene palynoflora and palaeoenvironments of Eskihisar (Yatağan Basin, southwestern Anatolia): a combined LM and SEM investigation. Bot. J. Linn. Soc., 182: 14–79.Google Scholar

  • BOUCHAL J.M., MAYDA S., AKGÜN F., GRÍMSSON F., ZETTER R. & DENK T. 2017. Miocene palynofloras of the Tınaz lignite mine, Muğla, southwest Anatolia: taxonomy, palaeoecology and local vegetation change. Rev. Palaeobot. Palynol., 243: 1–36.Google Scholar

  • BOZUKOV V. & IVANOV D. 1995. Davallia haidingeri Ett., a new species to Bulgarian flora – leaf remain and spores in situ. Phytol. Balcan., 1(2): 15–18.Google Scholar

  • BRABENEC B. 1909. Souborná květena českého útvaru třetihorního. Arch. přírodověd. Prozk. Čech, 14(3): 1–144.Google Scholar

  • BRAUN A. 1845. Die Tertiär-Flora von Öhningen. N. Jb. Min. Geogn. Geol. Petref.-Kunde, 1845: 164–174.Google Scholar

  • BRONGNIART A. 1822. Sur la classification et la distribution des végétaux fossiles en général, et sur ceux des terrains de sédiment supérieur en particulier. Mém. Mus. Natl. Hist. Nat., 8: 203–240.Google Scholar

  • BRONGNIART A. 1833. Notice sur une Conifère fossile du terrain d’eau douce de l’île d’Iliodroma. Ann. Sci. Nat., ser. 1, 30: 168–176.Google Scholar

  • BRONN H.G. 1838. Lethaea Geognostica II. E. Schweizerbart’s Verlagsbuchhandlung, Stuttgart.Google Scholar

  • BROWN R. 1935. Miocene leaves, fruits and seeds of Cercidiphyllum. J. Paleont., 13: 485–499.Google Scholar

  • BRUIJN H. DE, ÜNAY E. & HOEK OSTENDE L.W. VAN DEN. 1996. The composition and diversity of small mammal associations from Anatolia through the Miocene: 266–270. In: Bernor R.L., Fahlbusch V. & Mittman H.-W. (eds), The evolution of western Eurasian Neogene mammal faunas. Columbia Univ. Press, New York.Google Scholar

  • BUCKLAND W. 1836. Geology and mineralogy considered with reference to natural theology Vol. 1. William Pickering, London.Google Scholar

  • BUGGE G. 2005. Cercidiphyllum-like leaf fossils from the Palaeogene of Spitsbergen. Master thesis, University of Oslo.Google Scholar

  • BURGE D.O. & MANCHESTER S.R. 2008. Fruit morphology, fossil history, and biogeography of Paliurus (Rhamnaceae). Int. J. Pl. Sci., 169: 1066–1085.Google Scholar

  • BŮŽEK C. 1971. Tertiary flora of the northern part of the Pétipsy area. Věst. Ústř. Úst. geol., 36: 1–118.Google Scholar

  • BŮŽEK C., HOLÝ F. & KVAČEK Z. 1996. Early Miocene flora of the Cypris shale (Western Bohemia). Acta Mus. Nat. Pragae Ser. B., Hist. Nat., 52(1–4): 1–72.Google Scholar

  • CHANDLER M.E.J. 1923. The geological history of the genus Stratiotes: an account of the evolutionary changes which have occured within the genus during the Tertiary and Quaternary times. Quarterly J. Geol. Soc., London, 79: 117–138.Google Scholar

  • CHEN Y.-S., MESEGUER A.S., GODEFROID M., ZHOU Z., ZHANG J.-W., DENG T., KIM J.-H., NIE Z.-L., LIU Y.-S. & SUN H. 2017. Out-of-India dispersal of Paliurus (Rhamnaceae) indicated by combined molecular phylogenetic and fossil evidence. Taxon, 66(1): 78–90.Google Scholar

  • CONRAN J.G., KAULFUSS U., BANNISTER J.M., MILDENHALL D.C. & LEE D.E. 2010. Davallia (Polypodiales: Davalliaceae) macrofossils from Early Miocene Otago (New Zealand) with in situ spores. Rev. Palaeobot. Palynol., 162(1): 84–94.Google Scholar

  • CORBETT S.L. & MANCHESTER S.R. 2004. Phytogeography and fossil history of Ailanthus (Simaroubaceae). Int. J. Plant Sci., 165(4): 671–690.Google Scholar

  • CUVIER G. 1822. Recherches sur les ossemens fossiles. Vol. 2, 3. G. Dufour et E. D’Ocagne, Paris, Amsterdam.Google Scholar

  • CZECZOTT H. 1951. Środkowo-mioceńska flora Zalesiec koło Wiśniowca I. Acta Geol. Pol., 2: 349–445.Google Scholar

  • DE BRUIJN H., DAAMS R., DAXNER-HÖCK G., FAHLBUSCH V., GINSBURG L., MEIN P. & MORALES J. 1992. Report of the RCMNS working group on fossil mammals, Reisenburg 1990. Newsl. Stratigr., 26(2–3): 65–118.Google Scholar

  • DENK T. 2004. Revision of Fagus from the Cenozoic of Europe and South Western Asia and its phylogenetic implications. Doc. Nat., 150: 1–72.Google Scholar

  • DENK T. 2016. Palaeoecological interpretation of the late Miocene landscapes and vegetation of northern Greece: a comment to Merceron et al., 2016 (Geobios, doi:10.1016/j.geobios.2016.01.004). Geobios, 49: 135–146.CrossrefGoogle Scholar

  • DENK T. & GRIMM G.W. 2009. The biogeographic history of beech trees. Rev. Palaeobot. Palynol., 158: 83–100.Google Scholar

  • DENK T. & GRIMM G.W. 2010. The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon, 59: 351–366.Google Scholar

  • DENK T., GRÍMSSON F. & ZETTER R. 2012. Fagaceae from the Early Oligocene of Central Europe: persisting New World and emerging Old World biogeographic links. Rev. Palaeobot. Palynol., 169: 7–20.Google Scholar

  • DENK T., GÜNER H.T. & GRIMM G.W. 2014. From mesic to arid: Leaf epidermal features suggest preadaptation in Miocene dragon trees (Dracaena). Rev. Palaeobot. Palynol., 200: 211–228.Google Scholar

  • DENK T., GRÍMSSON F., ZETTER R. & SÍMONARSON L.A. 2011. Late Cainozoic floras of Iceland. 15 million years of vegetation and climate history in the northern North Atlantic. Topics in Geobiology, 35. Springer, Dordrecht.Google Scholar

  • DENK T., GRIMM G.W., GRÍMSSON F. & ZETTER R. 2013. Evidence from “Köppen signatures” of fossil plant assemblages for effective heat transport of Gulf Stream to subarctic North Atlantic during Miocene cooling. Biogeosciences, 10: 7927–7942.Google Scholar

  • DENK T., VELITZELOS D., GÜNER H.T. & FERRUFINO-ACOSTA L. 2015. Smilax (Smilacaceae) from the Miocene of western Eurasia with Caribbean biogeographic affinities. Am. J. Bot., 102(3): 423–438.Google Scholar

  • DENK T., GRIMM G.W., MANOS P.S., DENG M. & HIPP A. 2017b. An updated infrageneric classification of the oaks: review of previous taxonomic schemes and synthesis of evolutionary patterns. In: Gil-Peregrin E., Peguero-Pina J.J. & Sancho-Knapik D. (eds) Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus. Tree Physiology, 7. Springer Nature, Cham, Switzerland.Google Scholar

  • DENK T., VELITZELOS D., GÜNER H.T., BOUCHAL J.M., GRÍMSSON F. & GRIMM G. 2017a. Taxonomy and palaeoecology of two widespread western Eurasian Neogene sclerophyllous oak species: Quercus drymeja Unger and Q. mediterranea Unger. Rev. Palaeobot. Palynol., 241: 98–128.Google Scholar

  • DRANSFIELD J., UHL N.W., ASMUSSEN C.B., BAKER W.J., HARLEY M.M. & LEWIS C.E. 2008. Genera Palmarum. The evolution and classification of palms. Royal Bot. Gard. Kew.Google Scholar

  • DUBOIS A., GROSJEAN S. & PAICHELER J.-C. 2010. Strange tadpoles from the Lower Miocene of Turkey: is paedogenesis possible in Anurans? Acta Palaeont. Polonica, 55(1): 43–55.Google Scholar

  • DUEVER M.J., CARLSON J.E., MEEDER J.F., DUEVER L.C., GUNDERSON L.H., RIOPELLE L.A., ALEXANDER T.R., MYERS R.L. & SPANGLER D.P. 1986. The Big Cypress National Preserve. National Audobon Society, New York.Google Scholar

  • ECKENWALDER J.E. 1996. Systematics and evolution of Populus: 7–32. In: Stettler R.F., Bradshaw H.D., Heilman P.E. & Hinckley T.M. (eds.), Biology of Populus and its implications for management and conservation. NRC Research Press, National Research Council of Canada, Ottawa, Ontario, Canada.Google Scholar

  • ERDEI B., AKGÜN F. & LUMAGA M.R.B. 2010. Pseudodioon akyoli gen. et sp. nov., an extinct member of Cycadales from the Turkish Miocene. Plant Syst. Evol., 285: 33–49.Google Scholar

  • ETTINGSHAUSEN von C. 1852. Fossile Pflanzenreste aus dem trachytischen Sandstein von Heiligenkreuz bei Kremnitz. Abh. Geol. Reichsanst., 1: 1–14.Google Scholar

  • ETTINGSHAUSEN von C. 1858. Beiträge zur Kenntnis der fossilen Flora von Sotzka. Sitzungsber. kaiserl. Akad. Wiss. Wien, math.–naturwiss. Cl., 28(6): 471–567.Google Scholar

  • ETTINGSHAUSEN von C. 1866. Die fossile Flora des Tertiär-Beckens von Bilin. Vol. 1. Karl Gerold’s Sohn, Wien. FARJON A. 2005. A monograph of Cupressaceae and Sciadopitys. Royal Bot. Gard., Kew.Google Scholar

  • FENG X.X. & JIN J.H. 2012. First record of extinct fruit genus Chaneya in low-latitude tropic of South China. Sci. China Earth Sci., 55: 728–732.CrossrefGoogle Scholar

  • FISCHER T.C. & BUTZMANN R. 1997. Description of the fossil fruit Paulownia inopinata nov. sp. from the Middle Miocene of Unterwohlbach (Bavaria) and other possible occurrences of the genus in the Tertiary. Doc. Nat., 115: 1–13.Google Scholar

  • FISCHER T.C. & BUTZMANN R. 2000. Die mediterrane neogene Flora von Meleto (Valdarno, Italien). Paläobotanik, Paläoökologie und Pälaoklima. Flora Tertiaria Mediterranea, 5(6): 1–187.Google Scholar

  • FLORA OF NORTH AMERICA EDITORIAL COMMITTEE. 1993. Flora of North America North of Mexico. Volume 2. Pteridophytes and Gymnosperms. New York, Oxford, Oxford University Press.Google Scholar

  • FLORA OF NORTH AMERICA EDITORIAL COMMITTEE. 1997. Flora of North America North of Mexico. Volume 3. Magnoliophyta: Magnoliidae and Hamamelididae. New York, Oxford, Oxford University Press.Google Scholar

  • FORTELIUS M. (coord.) 2016. New and Old Worlds Database of Fossil Mammals (NOW). University of Helsinki. http://www.helsinki.fi/science/now/.

  • GARCÍA MASSINI J.L., JACOBS B.F. & TABOR N.J. 2010. Paleobotany and sedimentology of late Oligocene terrestrial strata from the northwestern Ethiopian Plateau. Palaeontologia Electronica, 13(1) 6A: 1–51. http://palaeo-electronica.org/2010_1/184/index.html

  • GEMICI Y., AKYOL E. & AKGÜN F. 1993. Şahınalı (Aydın) Neojen havzasinin fosil makro ve mikorflorasi. Doğa Turk. J. Bot., 17: 91–106.Google Scholar

  • GÖPPERT H.R. 1852. Ueber die Braunkohlefloren des nordöstlichen Deutschlands. Zeitschr. Deutschen geolog. Ges., 4(2): 484–496.Google Scholar

  • GÖPPERT H.R. 1855. Die tertiäre Flora von Schossnitz in Schlesien. Heyn'sche Buchhandlung (E. Remer.) Görlitz, Paris, Leipzig, London.Google Scholar

  • GREGOR H.J. & KNOBLOCH E. 2001. Kritische Bemerkungen zu Saporta’s fossilen Floren in Süd-Frankreich, speziell in der Provence. Flora Tertiaria Mediterranea, 4: 1–57.Google Scholar

  • GRIMM G.W., DENK T. & HEMLEBEN V. 2007. Evolutionary history and systematics of Acer section Acer – a case of low-level phylogenetics. Plant Syst. Evol., 267: 215–253.Google Scholar

  • GRIMM G.W., RENNER S.S., STAMATAKIS A. & HEMLEBEN V. 2006. A nuclear ribosomal DNA phylogeny of Acer inferred with maximum likelihood, splits graphs, and motif analyses of 606 sequences. Evol. Bioinform., 2: 279–294.Google Scholar

  • GRÍMSSON F., MELLER B., BOUCHAL J.M. & ZETTER R. 2015a. Combined LM and SEM study of the middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: part III. Magnoliophyta 1 – Magnoliales to Fabales. Grana, 54: 85–128.Google Scholar

  • GRÍMSSON F., GRIMM G.W., ZETTER R. & DENK T. 2016. Cretaceous and Paleogene Fagaceae from North America and Greenland: evidence for a Late Cretaceous split between Fagus and the remaining Fagaceae. Acta Palaeobot., 56: 247–305.Google Scholar

  • GRÍMSSON F., GRIMM G.W., MELLER B., BOUCHAL J.M. & ZETTER R. 2015b. Combined LM and SEM study of the middle Miocene (Sarmatian) palynoflora from the Lavanttal Basin, Austria: part IV. Magnoliophyta 2 – Fagales to Rosales. Grana, 55: 101–163.Google Scholar

  • GÜNER T.H. & DENK T. 2012. The genus Mahonia in the Miocene of Turkey: taxonomy and biogeographic implications. Rev. Palaeobot. Palynol., 175: 32–46.Google Scholar

  • GÜNER T.H., BOUCHAL J.M., KÖSE N., GÖKTAS F., MAYDA S. & DENK T. 2017. Landscape heterogeneity in the Yatağan Basin (southwestern Turkey) during the middle Miocene inferred from plant macrofossils. Palaeontographica, B, 296(1–6): 113–171.Google Scholar

  • HABLY L. 2001. Fruits and leaves of Ailanthus Desf. From the Tertiary of Hungary. Acta Palaeobot., 41 (2): 207–219.Google Scholar

  • HABLY L. 2002. Revision of Cedrelospermum (Ulmaceae) fruits and leaves from the Tertiary of Hungary and France. Palaeontographica, B, 262(1–4): 71–90.Google Scholar

  • HAMZEH M. & DAYANANDAN S. 2004. Phylogeny of Populus (Salicaceae) based on nucleotide sequences of chloroplast trnT-trnF region and nuclear rDNA. Am. J. Bot., 91(9): 1398–1408.CrossrefGoogle Scholar

  • HANTKE R. 1954. Die fossile Flora der obermiozänen Oehninger-Fundstelle Schrotzburg (Schienerberg, Süd-Baden). Denkschr. Schweiz. Naturf. Ges., 80: 27–118.Google Scholar

  • HANTKE R. 1965. Die fossilen Eichen und Ahorne aus der Molasse der Schweiz und von Oehningen (Süd-Baden). Neujahrsbl. Nat. Ges. Zürich, 167: 1–108.Google Scholar

  • HARZHAUSER M., KROH A., MANDIC O., PILLER W.E., GÖHLICH U., REUTER M. & BERNING B. 2007. Biogeographic responses to geodynamics: a key study all around the Oligo-Miocene Tethyan Seaway. Zool. Anz., 246(4): 241–256.Google Scholar

  • HEER O. 1855. Die tertiäre Flora der Schweiz. – Flora Tertiaria Helvetiae, vol. 1. Winterthur, Verlag Wurster & Co. HEER O. 1856. Die tertiäre Flora der Schweiz. – Flora Tertiaria Helvetiae, vol. 2. Winterthur, Verlag Wurster & Co.Google Scholar

  • HEER O. 1859. Die tertiäre Flora der Schweiz. – Flora Tertiaria Helvetiae, vol. 3. Winterthur, Verlag Wurster & Co.Google Scholar

  • HOEK OSTENDE VAN DEN L.W. 2001. Insectivore faunas from the Lower Miocene of Anatolia – Part 8: Stratigraphy, palaeoecology, palaeobiogeography. Scripta Geol., 122: 101–122.Google Scholar

  • HOEK OSTENDE VAN DEN L.W., MAYDA S., OLIVER A., MADERN A., HERNÁNDEZ-BALLARÍN V., PELÁEZ-CAMPOMANES P. 2015. Aliveri revisited, a biogeographical appraisal of the early Miocene mammals from the eastern Mediterranean. Palaeobiod. Palaeoenv., 95: 271–284.Google Scholar

  • HU H.H. & CHANEY R.W. 1940. A Miocene flora from Shantung Province, China. Carnegie Inst. Wash. Publ., 507: 1–147.Google Scholar

  • HU Q., HUANG J., CHEN Y.-F., MANCHESTER S.R. 2017. Mahonia fossils from the Oligocene of South China: Taxonomic and biogeographic implications. Palaeoworld. http://dx.doi.org/10.1016/j.palwor.2017.03.004Crossref

  • ILJINSKAYA I.A. 2005. Populus populina (Brogn.) Knobloch: 135–138. In: Budantsev L. (ed.), Fossil Flowering Plants of Russia and Adjacent Countries. Russian Academy of Sciences, Moscow.Google Scholar

  • JECHOREK H. & KOVAR-EDER J. 2004. Vegetational characteristics in Europé around the late early to early middle Miocene based on the plant macro record. Cour. Forsch.-Inst. Senckenberg, 249: 53–62.Google Scholar

  • KASAPLIGIL B. 1977. A late Tertiary conifer–hardwood forest from the vicinity of Güvem village, near Kızılcahaman, Ankara. Bull. Miner. Res. Explor. Inst. Turk., 88: 25–33.Google Scholar

  • KEILHACK K. 1896. Über Folliculites. Naturw. Wochenschr., 11: 504.Google Scholar

  • KLUCKING E.P. 1987. Leaf venation patterns. Volume 2. Lauraceae. J. Cramer, Berlin, Stuttgart.Google Scholar

  • KMENTA M. 2011. Die Mikroflora der untermiozänen Fundstelle Altmittweida, Deutschland. Diploma thesis, Univ. Vienna. 102 p.Google Scholar

  • KNOBLOCH E. 1964. Haben Cinnamomum scheuchzeri Heer und Cinnamomum polymorphum (Al. Braun) Heer nomenklatorisch richtige Namen? N. Jb. Geol. Paläont. Mh., 10: 597–603.Google Scholar

  • KNOBLOCH E. 1968. Bemerkungen zur Nomenklatur Tertiärer Pflanzenreste. Acta Mus. Nat. Pragae Ser. B, 24(3): 121–151.Google Scholar

  • KNOBLOCH E. 1998. Der pliozäne Laubwald von Willershausen am Harz. Doc. Nat., 120: 1–302.Google Scholar

  • KNOBLOCH E. & KVAČEK Z. 1964. Byttneriophyllum tiliaefolium (Al. Braun) Knobloch et Kvaček in den tertiären Floren der Nordhalbkugel. Acta Mus. Nat. Pragae Ser. B, 5: 123–166.Google Scholar

  • KNOBLOCH E. & KVAČEK Z. 1976. Miozäne Blätterfloren vom Westrand der Böhmischen Masse. Rozpravy Ústøedního Ústavu Geologického, 42: 1–131.Google Scholar

  • KOLAKOVSKY A.A. 1964. The Pliocene flora of Kodor. Sukhumi Bot. Gard. Monogr., 1: 1–200.Google Scholar

  • KOTLABA F. 1963. Tertiary plants from three new localities in southern Slovakia. Acta Mus. Nat. Pragae Ser. B, 19(2): 53–72.Google Scholar

  • KOVAR-EDER J. 1982. Eine Blätter-Flora des Egerien (Ober-Oligozän) aus marinen Sedimenten der Zentralen Paratethys im Linzer Raum (Österreich). Beitr. Paläont. Österr., 9: 1–209.Google Scholar

  • KOVAR-EDER J. & KVAČEK Z. 2002. Towards vegetation mapping based on the fossil plant record. Acta Univ. Carol. – Geol., 46(4): 7–13.Google Scholar

  • KOVAR-EDER J., KVAČEK Z. & STRÖBITZER-HERMANN M. 2004. The Miocene flora of Parschlug (Styria, Austria) – revision and synthesis. Ann. Naturhist. Mus. Wien, 105(A): 45–159.Google Scholar

  • KOVÁTS J. 1856. Fossile Flora von Erdőbénye. Arb. Geol. Ges. Ung., 1: 1–38.Google Scholar

  • KRYSHTOFOWICZ A.N., PALIBIN I.V., SHAPARENKO K.K., YARMOLENKO A.V., BAYKOVSKAYA T.N., GRUBOV V.I., ILJINSKAYA I.A. 1956. Oligotsenovaya flora gory Ashutas v Kazakhstane (Oligocene flora of Ashutas Mount in Kazakhstan). Komarov Bot. Inst. Acad. Sci. SSSR, publ. 145, ser. 8. Palaeobotanica, 1: 1–241 (in Russian).Google Scholar

  • KVAČEK Z. 1999. An ancient Calocedrus (Cupressaceae) from the European Tertiary. Flora, 194: 237–248.Google Scholar

  • KVAČEK Z. & WALTHER H. 1989. Revision der mitteleuropäischen tertiären Fagaceen nach blattepidermalen Charakteristiken III. Teil Dryophyllum Debey ex Saporta und Eotrigonobalanus Walther & Kvaček gen. nov. Feddes Repert., 100: 575–601.Google Scholar

  • KVAČEK Z. & HABLY L. 1991. Notes on the Egerian stratotype flora at Eger (Wind brickyard), Hungary, Upper Oligocene. Ann. Hist.-Nat. Mus. Nat. Hung., 83: 49–82.Google Scholar

  • KVAČEK Z. & WALTHER H. 1991. Revision der mitteleuropäischen tertiären Fagaceen nach blattepidermalen Charakteristiken. IV. Teil: Fagus Linné. Feddes Repert., 102: 471–534.Google Scholar

  • KVAČEK Z., MIHAJLOVIĆ D. & VRABAC S. 1993. Early Miocene flora of Miljevina (eastern Bosnia). Acta Palaeobot., 33(1): 53–89.Google Scholar

  • KVAČEK Z. & HABLY L. 1998. New plant elements in the Tard Clay Formation from Eger-Kiseged. Acta Palaeobot., 38(1): 5–23.Google Scholar

  • KVAČEK Z. & WALTHER H. 1998. The Oligocene volcanic flora of Kundratice near Litoměřice, České středohoří Volcanic Complex (Czech Republic) – a review. Acta Mus. Nat. Pragae Ser. B, 54(1–2): 1–42.Google Scholar

  • KVAČEK Z. & ERDEI B. 2001. Putative proteaceous elements of the Lomatites-type reinterpreted as new Berberis of the European Tertiary. Plant Syst. Evol., 226: 1–12.Google Scholar

  • KVAČEK Z. & TEODORIDIS V. 2011. The late Eocene flora Kučlin near Bílina in North Bohemia revisited. Acta Mus. Nat. Pragae Ser. B, 67(3–4): 83–144.Google Scholar

  • KVAČEK Z. & WALTHER H. 2004. Oligocene flora of Bechlejovice at Děčín from the neovolcanic area of the České Středohoři Mountains, Czech Republic. Acta Mus. Nat. Pragae Ser. B, 60(1–2): 9–60.Google Scholar

  • KVAČEK Z., VELITZELOS, D. & VELITZELOS E. 2002. Late Miocene flora of Vegora, Macedonia, N. Greece. Korali Publications, Athens.Google Scholar

  • KVAČEK Z., TEODORIDIS V. & ROIRON P. 2011. A forgotten Miocene mastixioid flora of Arjuzanx (Landes, SW France). Palaeontographica, B, 285: 3–111.Google Scholar

  • LES D.H. 1989. The Evolution of achene morphology in Ceratophyllum (Ceratophyllacaea), IV. Summary of proposed relationships and evolutionary trends. Syst. Bot., 14(2): 254–262.CrossrefGoogle Scholar

  • LIU H. & SCHNEIDER H. 2013. Evidence supporting Davallia canariensis as a late Miocene relict endemic to Macaronesia and Atlantic Europe. Austral. Syst. Bot., 26(5): 378–385.CrossrefGoogle Scholar

  • LIU Y.-S. 1996. Foliar architecture of Betulaceae and a revision of the Chinese betulaceous megafossils. Palaeontographica, B, 239: 23–57.Google Scholar

  • LÓPEZ-ANTOÑANZAS R., SEN S. & SARAÇ G. 2004. A new large Ctenodactylid species from the Lower Miocene of Turkey. J. Vertebr. Paleont., 24 (3): 676–688.Google Scholar

  • MACGINITIE H.D. 1953. Fossil plants of the Florissant beds, Colorado. Carnegie Inst. Washington Publ., 599: 1–198.Google Scholar

  • MAI D.H. 1963. Beiträge zur Kenntnis der Tertiärflora von Seifhennersdorf (Sachsen). Jb. Staatl. Mus. Mineral. Geol., 1963: 39–114.Google Scholar

  • MAI D.H. 1995. Tertiäre Vegetationsgeschichte Europas. Gustav Fischer Verlag, Stuttgart.Google Scholar

  • MAI D.H. & WALTHER H. 1991. Die oligozänen und miozänen Floren NW-Sachsens und des Bitterfelder Raumes. Abh. Staatl. Mus. Mineral. Geol. Dresden, 38: 1–230.Google Scholar

  • MANCHESTER S.R. 1987. The fossil history of the Juglandaceae. Monographs Syst. Bot., 21: 1–137.Google Scholar

  • MANCHESTER S.R. 1994. Fruits and seeds of the middle Eocene Nut Bed Flora, Clarno Formation, Oregon. Palaeontographica Am., 58: 1–205.Google Scholar

  • MANCHESTER S.R. & DILLHOFF R.M. 2004. Fagus (Fagaceae) fruits, foliage, and pollen from the Middle Eocene of Pacific northwestern North America. Can. J. Bot., 82: 1509–1517.CrossrefGoogle Scholar

  • MANCHESTER S.R. & KAPGATE D. 2014. Fruits and seeds of the late Maastrichtian Deccan cherts of central India. Abstract 651, Botany 2014. http://2014.botanyconference.org/engine/search/index.php?func=detail&aid=651

  • MENITSKY Y. L. 2005. Oaks of Asia. Scientific Publishers, New Hamshire.Google Scholar

  • MEYER H.W. & MANCHESTER S.R. 1997. The Oligocene Bridge Creek flora of the John Day Formation. Univ. California Publ. Geol. Sci., 141: 1–195.Google Scholar

  • NAKOMAN E. 1966. Contribution à l’étude palynologique des formations tertiaires du Bassin de Thrace. Ann. Soc. Géol. Nord, 86: 65–107.Google Scholar

  • NAVARRO E., BOUSQUET J., MOIROUD A., MUNIVE A., PIOU D. & NORMAND P. 2003. Molecular phylogeny of Alnus (Betulaceae), inferred from nuclear ribosomal DNA ITS sequences. Plant and Soil, 254: 207–217.Google Scholar

  • NURY D. 1988. L’Oligocène de Provence méridionale. Stratigraphie, dynamique sédimentaire, reconstitutions paléogéographiques. Thèse de Doctorat d’Etat (1987). Université de Provence. Documents du BRGM, no. 163, 412 p.Google Scholar

  • PAICHELER J.-C. 1978. Volcanic paleoenvironment and examples of sedimentary incidences at Tertiary Beşkonak Lake (Northern Anatolia – Turkey). Bull. Geol. Soc. Turkey, 21: 11–25.Google Scholar

  • PAICHELER J.-C. & BLANC C. 1981. La flore du basin lacustre miocène de Bes-Konak (Anatolie septentrionale, Turquie). Géol. Mediterr., 8(1): 19–60.Google Scholar

  • PAICHELER J.-C., BROIN F. DE, GAUDANT J., MOURER-CHAUVIRE C., RAGE J.-C. & VERGNAUD-GRAZZINI C. 1978. Le bassin lacustrine miocène de Bes-Konak (Anatolie-Turquie): géologie et introduction a la paléontologie des vertébrés. Geobios, 11(1): 43–65.CrossrefGoogle Scholar

  • PAVLYUTKIN B.I., CHEKRYZHOV I.U. & PETRENKO T.I. 2014. Geology and floras of lower Oligocene in the Primorye. Russ. Acad. Sci., Vladivostok. 236 p.Google Scholar

  • PEEL M.C., FINLAYSON B.L. & MCMAHON T.A. 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci., 11: 1633–1644.CrossrefGoogle Scholar

  • POPOV S.V., RÖGL F., ROZANOV A.Y., STEININGER F.F., SHCHERBA I.G. & KOVAC M. (eds) 2004. Lithological-paleogeographic maps of Paratethys. 10 maps late Eocene to Pliocene. Cour. Forsch.-Inst. Senckenberg, 250: 1–46.Google Scholar

  • POSTIGO-MIJARRA J.M. & BARRÓN E. 2013. Zonal plant communities of the Ribesalbes-Alcora Basin (La Rinconada mine, eastern Spain) during the early Miocene. Bot. J. Linn. Soc., 172: 153–174.Google Scholar

  • RÖGL F. 1998. Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann. Naturhist. Mus. Wien, 99 A: 279–310.Google Scholar

  • RÜCKERT-ÜLKÜMEN N. 2003. Fossil ranids from Miocene deposits of Central Anatolia. Istanbul Üniv. Müh. Fak. Yerbilimleri Dergisi, 16(2): 71–74.Google Scholar

  • SACHSE M. 2001. Oleaceous laurophyllous leaf fossils and pollen from the European Tertiary. Rev. Palaeobot. Palynol., 115: 213–234.Google Scholar

  • SAPORTA G. DE. 1865. Etudes sur la végétation du sud-est de la France à l’époque tertiaire. Deuxième partie, III. Ann. Sci. Nat. Bot., 5th Ser. 4: 5–264.Google Scholar

  • SAPORTA G. DE. 1867. Etudes sur la végétation du sud-est de la France à l’époque tertiaire. Troisième partie, I–III. Ann. Sci. Nat. Bot., 5th Ser. 8: 5–136.Google Scholar

  • SAPORTA G. DE. 1868. Etudes sur la végétation du sud-est de la France à l’époque tertiaire. Troisième partie, IV. Flore des argiles du bassin de Marseille. Ann. Sci. Nat. Bot., 5th Ser. 9: 5–62.Google Scholar

  • SAPORTA G. DE. 1891. Recherches sur la végétation du niveau Aquitanien de Manosque. Mém. Soc. Géol., 9: 1–83.Google Scholar

  • SAPORTA G. DE & MARION A.F. 1876. Recherches sur les végétaux fossiles de Meximieux. Arch. Mus. Hist. Nat., 1: 131–335.Google Scholar

  • SCHILDGEN T.F., YILDIRIM C., COSENTINO D. & STRECKER M.R. 2014. Linking slab break-off, Hellenic trench retreat, and uplift of the Central and Eastern Anatolian plateau. Earth-Sci. Rev., 128: 147–168.Google Scholar

  • SCHILDGEN T.F., COSENTINO D., BOOKHAGEN B., NIEDERMANN S., YILDIRIM C., ECHTLER H., WITTMANN H. & STRECKER M.R. 2012. Multi-phased uplift of the southern margin of the Central Anatolian plateau, Turkey: A record of tectonic and upper mantle processes. Earth Planet. Sci. Lett., 317/318: 85–95.Google Scholar

  • SCHROEDER G.-F. 1998. Lehrbuch der Pflanzengeographie. Quelle & Meyer, Wiesbaden.Google Scholar

  • SITAR V. 1973. Die fossile Flora sarmatischer Sedimente aus der Umgebung von Močiar in der mittleren Slowakei. Acta Geol. Geogr. Univ. Comenianae, Geologica, 26: 5–85.Google Scholar

  • SMILEY C.J. 1961. A record of Paulownia in the Tertiary of North America. Am. J. Bot., 48(2): 175–179.CrossrefGoogle Scholar

  • STITZENBERGER E. 1851. Uebersicht der Versteinerungen des Grossherzogthums Baden. J. Diernfellner, Freiburg i. Br.Google Scholar

  • STRÖBITZER-HERMANN M. 2002. Results of cuticular-analytic, systematic-taxonomic, stratigraphic and palaeoecological investigations in fossil Acer-species. 6th European Palaeobotany-Palynology Conference. Athens, Greece, pp. 165–166.Google Scholar

  • STUR D. 1867. Beiträge zur Flora der Süßwasserquarze, der Congerien-und Ceritherienschichten im Wiener und Ungarischen Becken. Jb. Geol. Reichsanst., 17: 77–188.Google Scholar

  • SÜSS H. & VELITZELOS E. 2010. Lesbosoxylon gen. nov., eine neue Morphogattung mit dem Typus Lesbosoxylon ventricosuradiatum sp. nova aus dem Tertiär der Insel Lesbos, Griechenland. Feddes Repert., 121(1–2): 18–26.Google Scholar

  • TAKASO T. & TOMLINSON P.B. 1990. Cone and ovule ontogeny in Taxodium and Glyptostrobus (Taxodiaceae-Coniferales). Am. J. Bot., 77(9): 1209–1221.Google Scholar

  • TANKUT A., WILSON M. & YIHUNIE T. 1998. Geochemistry and tectonic setting of Tertiary volcanism in the Güvem area, Anatolia, Turkey. J. Volcan. Geotherm. Res., 85(1–4): 285–301.Google Scholar

  • TEODORIDIS V. 2007. Revision of Potamogeton fossils from the Most Basin and their palaeoecological significance (Early Miocene, Czech Republic). Bull. Geosc., 82(4): 409–418.Google Scholar

  • TEODORIDIS V. & KVAČEK Z. 2005. The extinct genus Chaneya Wang & Manchester in the Tertiary of Euorpe – a revision of Porana-like fruit remains from Ohningen and Bohemia. Rev. Palaeobot. Palynol., 134: 85–103.Google Scholar

  • TEODORIDIS V. & KVAČEK Z. 2006. Palaeobotanical research of the Early Miocene deposits overlying the main coal seam (Libkovice and Lom Members) in the Most Basin (Czech Republic). Bull. Geosci., 81(2): 93–113.CrossrefGoogle Scholar

  • TEODORIDIS V. & SAKALA J. 2008. Early Miocene conifer macrofossils from the Most Basin (Czech Republic). N. Jb. Geol. Paläont. (Abh.), 250: 287–312.Google Scholar

  • TOPRAK V., SAVASCIN Y., GULEC N. & TANKUT A. 1996. Structure of the Galatean Volcanic Province, Turkey. Int. Geol. Rev., 38(8): 747–758.Google Scholar

  • UNGER F. 1841–1847. Chloris Protogaea. Beiträge zur Flora der Vorwelt. Wilhelm Engelmann, Leipzig.Google Scholar

  • UNGER F. 1850a. Die fossile Flora von Sotzka. Denkschr. k. Akad. Wiss., Math.-Naturwiss. Cl., 2: 127–197.Google Scholar

  • UNGER F. 1850b. Die Gattung Glyptostrobus in der Tertiär-Formation. Sitz. Ber. Akad. Wiss., Math.-Naturwiss. Cl., 5: 434–435.Google Scholar

  • UNGER F. 1850c. Genera et species plantarum fossilium. W. Braunmüller, Vindobonae.Google Scholar

  • UNGER F. 1852. Iconographica plantarum fossilium. Denkschr. k. Akad. Wiss., Math.-Naturwiss. Cl., 4: 73–118.Google Scholar

  • UNGER F. 1864. Sylloge Plantarum Fossilium. Pugillus Secundus. Sammlung fossiler Pflanzen besonders aus der Tertiär-Formation. Karl Gerold’s Sohn, Vienna.Google Scholar

  • UNGER F. 1867. Die Fossile Flora von Kumi auf der Insel Euboea. Denkschr. k. Akad. Wiss., Math.-Naturwiss. Cl., 27: 27–90.Google Scholar

  • VASILYAN D., CLAESSENS L. & ZBYNEK R. 2016. Fish, amphibian and reptile faunas from Kargi 1-3, Harami 1, Harami 3, Hançili 1, Keseköy, Çandir, Bağiçi, Turkey, latest Oligocene – Middle Miocene: 21. In: Mayda S., Kaya T., Pelaez-Campomanes & Hoek Ostende L. W. van den (eds), Taking the Orient Express. RCMNS workshop on the role of Anatolia in Mediterranean Neogene palaeobiogeography EGE University, Izmir, 16–18 September 2016.Google Scholar

  • VELITZELOS D. (ed.). 2002. Field Guide to the Neogene of the Island of Evia–Early Miocene Flora of Kymi. Field Guide, 6th Europ. Palaeobot.-Palynol. Conf., University of Athens.Google Scholar

  • VELITZELOS E. & GREGOR H.-J. 1990. Some aspects of the Neogene floral history in Greece. Rev. Palaeobot. Palynol., 62: 291–307.Google Scholar

  • VELITZELOS D., BOUCHAL J.M. & DENK T. 2014. Review of the Cenozoic floras and vegetation of Greece. Rev. Palaeobot. Palynol., 204: 56–117.Google Scholar

  • VELITZELOS E., PETRESCU I. & SYMEONIDIS N. 1981. Tertiäre Pflanzenreste aus der Ägäis. Die Makroflora der Insel Lesvos (Griechenland). Ann. Géol. Pays Hellén., 30: 500–514.Google Scholar

  • VELITZELOS E., VELITZELOS D. & GREGOR H.-J. 2005. Tilia knoblochii nov. spec., the first occurrence of bracts with capsules in Greece, with remarks on the geology of the Aliveri–Kymi-Basin (Lower Miocene). Flora Tertiaria Mediterr., 6(9): 1–19.Google Scholar

  • WALTHER H. 1972. Studien über tertiäre Acer Mitteleuropas. Abh. Staatl. Mus. Mineral. Geol., 19: 1–309.Google Scholar

  • WALTHER H. & KVAČEK Z. 2007. Early Oligocene flora of Seifhennersdorf (Saxony). Acta Mus. Nat. Pragae Ser. B, 63(2–4): 85–174.Google Scholar

  • WANG Q. 2012. Nomenclatural notes on Leguminosites and several taxonomically relevant names (fossil Leguminosae). Taxon, 61(4): 871–877.Google Scholar

  • WANG Y.F. & MANCHESTER S.R. 2000. Chaneya, a new genus of winged fruit from the Tertiary of North America and eastern Asia. Int. J. Plant Sci., 161: 167–178.Google Scholar

  • WANG N., MCALLISTER H.A., BARTLETT P. & BUGGS R.J.A. 2016. Molecular phylogeny and genome size evolution of the genus Betula (Betulaceae). Ann. Bot., 117: 1023–1035.Google Scholar

  • WESSEL P. & WEBER O. 1856. Neuer Beitrag zur Tertiärflora der niederrheinischen Braunkohleformationen. Palaeontographica, 4: 111–168.Google Scholar

  • WESSELS W. 2009. Miocene rodent evolution and migration: Muroidea from Pakistan, Turkey and Northern Africa. Geologica Ultraiectina, 307: 1–290.Google Scholar

  • WEYLAND H. 1943. Beiträge zur Kenntnis der rheinischen Tertiärflora. Part 6. Palaeontographica, B, 87: 94–136.Google Scholar

  • WEYLAND H. & KILLPER K. 1963. Kritische Untersuchungen zur Kutikularanalyse tertiärer Blätter VI. Palaeontographica, B, 113: 93–116.Google Scholar

  • WILSON M., TANKUT A. & GULEÇ N. 1997. Tertiary volcanism of the Galatia Province, NW Central Anatolia, Turkey. Lithos, 42: 105–121.CrossrefGoogle Scholar

  • WOROBIEC G., WOROBIEC E. & KVAČEK Z. 2010. Neogene leaf morphotaxa of Malvaceae s.l. in Europe. Int. J. Plant Sci., 171(8): 892–914.Google Scholar

  • WU Z.Y. & RAVEN P.H. 1999. Flora of China, Volume 4. Cycadaceae through Fagaceae. Beijing, Science Press, St. Louis, Missouri Botanical Garden Press.Google Scholar

  • WU Z.Y., RAVEN P.H. & HONG D.Y. 2003. Flora of China. Vol. 9 (Pittosporaceae through Connaraceae). Beijing, Science Press, St. Louis, Missouri Botanical Garden Press.Google Scholar

  • YANG J., SPICER R.A., SPICER T.E.V. & LI C-S. 2011. ‘CLAMP’ Online: a new web-based palaeoclimate tool and its application to the terrestrial Paleogene and Neogene of North America. Palaeobiodiv. Palaeoenv., 91: 163–183.Google Scholar

  • YAVUZ-IŞIK N. 2008. Vegetation and climatic investigations in the EarlyMiocene lacustrine deposits of the Güvem Basin (Galatean Volcanic Province), NW Central Anatolia, Turkey. Palaeogeogr. Palaeoclimatol. Palaeoecol., 150: 130–139.Google Scholar

  • ZACHOS J., PAGANI M., SLOAN L., THOMAS E. & BILLUPS K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292: 686–693.Google Scholar

  • ZENKER J.C. 1833. Folliculites Kaltennordheimensis, eine neue fossile Fruchtart. N. Jb. Min. Geogn. Geol. Petref.-Kunde, 1833: 177–179.Google Scholar

  • ZHILIN S.G. 1974. The Tertiary floras of the Plateau Ustjurt (Transcaspia) (in Russian). Komarov Botanical Institute of the Academy of Sciences of the USSR, Leningrad, 122 p.Google Scholar

About the article

Received: 2017-06-14

Accepted: 2017-10-24

Published Online: 2017-12-19

Published in Print: 2017-12-01

Citation Information: Acta Palaeobotanica, Volume 57, Issue 2, Pages 237–338, ISSN (Online) 2082-0259, DOI: https://doi.org/10.1515/acpa-2017-0011.

Export Citation

© 2017 Thomas Denk et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in