Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year

IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
See all formats and pricing
More options …
Volume 57, Issue 2 (Jun 2007)


Development and evaluation of carvedilol transdermal patches

Yuveraj Tanwar / Chetan Chauhan / Anshu Sharma
Published Online: 2007-05-16 | DOI: https://doi.org/10.2478/v10007-007-0012-x

Development and evaluation of carvedilol transdermal patches

Transdermal patches of carvedilol with a HPMC-drug reservoir were prepared by the solvent evaporation technique. In this investigation, the membranes of Eudragit RL100 and Eudragit RS100 were cast to achieve controlled release of the drug. The prepared patches possessed satisfactory physicochemical characteristics. Thickness, mass and drug content were uniform in prepared batches. Moisture vapour transmission through the patches followed zero-order kinetics. In vitro permeation studies were performed using a K-C diffusion cell across hairless guinea pig skin and followed the super case II transport mechanism. The effects of non-ionic surfactants Tween 80 and Span 80 on drug permeation were studied. The nonionic surfactants in the patches increased the permeation rate, Span 80 exhibiting better enhancement relative to Tween 80. The patches were seemingly free of potentially hazardous skin irritation.

Development and evaluation of carvedilol transdermal patches

Metodom evaporacije otapala pripravljeni su transdermalni flasteri karvedilola s HPMC-lijek rezervoarom, s membranama od Eudragita RL100 i Eudragita RS100 koje kontroliraju oslobađanje. Flasteri su bili zadovoljavajućih fizičko-kemijskih svojstava, ujednačene debljine, mase i sadržaja ljekovite tvari. Prijelaz vlage i pare kroz flastere slijedio je kinetiku nultog reda. In vitro permeacija praćena je na koži zamorca pomoću K-C difuzijske Ćelije, a slijedila je super II transportni mehanizam. Također je ispitivan učinak neionizacijskih površinski aktivnih tvari Tween 80 i Span 80 na permeaciju karvedilola. Rezultati su pokazali da su obje površinski aktivne tvari povećale permeaciju, ali Span 80 više. Flasteri nisu nimalo uzrokovali iritaciju koše.

Keywords: carvedilol; transdermal patches; in vitro permeation; permeation rate

Keywords: karvedilol; transdermalni flasteri; in vitro permeacija; brzina permeacije

  • R. R. Ruffolo, Jr. and G. Z. Feuerstein, Pharmacology of carvedilol: rational for use in hypertension, coronary artery disease, and congestive heart failure, Cardiovasc. Drugs Ther.11 (1997) 247-256.Google Scholar

  • K. E. Thummel and D. D. Shen, Design and Optimization of Dosage Regimens: Pharmacokinetic Data, in Goodman and Gilman's The Pharmacological Basis of Therapeutics (Eds. J. G. Hardman, L. E. Limbirel and A. G. Gilman), 10th ed., Mc. Graw Hill, New York 2001, p. 1936.Google Scholar

  • L. Landsberg and J. B. Young, Physiology and Pharmacology of the Autonomic Nervous System, in Harrison's Principles of Internal Medicine (Eds. E. Braunwald, A. S. Fanci, D. L. Kasper, S. L. Hauser, D. L. Longo and J. L. Janeson), 15th ed., Mc. Graw Hill, New York 2001, p. 447.Google Scholar

  • U. V. Singh, S. Pandey and N. Udupa, Preparation and evaluation of flurbiprofen and diclofenac sodium transdermal films, Indian J. Pharm. Sci.54 (1993) 145-147.Google Scholar

  • P. Arora and B. Mukherjee, Design, development, physicochemical, and in vitro and in vivo evaluation of transdermal patches containing diclofenac diethylammonium salt, J. Pharm. Sci.91 (2002) 2076-2089.Google Scholar

  • C. Amnuaikit, I. Ikeuchi, K. Ogawara, K. Higaki and T. Kimura, Skin permeation of propranolol from polymeric film containing terpene enhancers for transdermal use, Int. J. Pharm.289 (2005) 167-178.Google Scholar

  • P. R. P. Verma and S. S. Iyer, Transdermal delivery of propranolol using mixed grades of Eudragit: design and in vitro and in vivo evaluation, Drug Dev. Ind. Pharm.26 (2000) 471-476.Google Scholar

  • V. K. Devi, S. Saisivam, G. R. Maria and P. U. Deepti, Design and evaluation of matrix diffusion controlled transdermal patches of verapamil hydrochloride, Drug Dev. Ind. Pharm.29 (2003) 495-503.Google Scholar

  • R. Krishna and J. K. Pandit, Transdermal delivery of propranolol, Drug Dev. Ind. Pharm.20 (1994) 2459-2465.Google Scholar

  • P. R. Keshary and Y. W. Chien, Mechanisms of transdermal nitroglycerin administration (I): development of finite-dosing skin permeation system, Drug Dev. Ind. Pharm.10 (1984) 883-913.Google Scholar

  • G. K. Jain, A. K. Sharma and S. S. Agarwal, Transdermal controlled administration of verapamil-enhancement of skin permeability, Int. J. Pharm.130 (1996) 169-177.Google Scholar

  • J. H. Draize, G. Woodard and H. O. Calvery, Methods for the study of irritation and toxicity of substances applied topically to the skin and mucous membranes, J. Pharmacol. Exp. Ther.82 (1944) 377-390.Google Scholar

  • C.-W. Cho and S.-C. Shin, Enhanced transdermal delivery of atenolol from the ethylene-vinyl acetate matrix, Int. J. Pharm.287 (2004) 67-71.Google Scholar

  • R. W. Korsmeyer, R. Gurny, E. M. Doelker, P. Buri and N. A. Peppas, Mechanism of solute release from porous hydrophilic polymers, Int. J. Pharm.15 (1983) 25-35.Google Scholar

  • P. L. Ritger and N. A. Peppas, Simple equation for solute release. Part 1. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or disks, J. Control. Rel.5 (1987) 37-42.Google Scholar

  • V. Rao and S. Shyale, Preparation and evaluation of ocular inserts containing norfloxacin, Turk J. Med. Sci.34 (2004) 239-246.Google Scholar

  • S. K. Sahoo, A. A. Mallick, B. B. Barik and P. Ch. Senapati, Formulation and in vitro evaluation of eudragit microspheres of stavudine, Trop. J. Pharm. Res.4 (2005) 369-375.Google Scholar

About the article

Published Online: 2007-05-16

Published in Print: 2007-06-01

Citation Information: Acta Pharmaceutica, ISSN (Online) 1846-9558, ISSN (Print) 1330-0075, DOI: https://doi.org/10.2478/v10007-007-0012-x.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Asgar Ali, Nitin Kumar, Abdul Ahad, Mohd. Aqil, and Yasmin Sultana
Journal of Polymer Engineering, 2015, Volume 35, Number 7
A.M. Abdel Azim, M. El-Ashmoony, A.M. Swealem, and R.A. Shoukry
Journal of Drug Delivery Science and Technology, 2014, Volume 24, Number 1, Page 92
S.K. Yellanki, S. Jagtap, and R. Masareddy
Journal of Young Pharmacists, 2011, Volume 3, Number 3, Page 181
Kevin C. Garala and Pratik H. Shah
Journal of Macromolecular Science, Part A, 2010, Volume 47, Number 3, Page 273
J. W. Wiechers, A. C. Watkinson, S. E. Cross, and M. S. Roberts
International Journal of Cosmetic Science, 2012, Volume 34, Number 6, Page 525
Jung Bo Shim, Min Jeong Kim, Seul Ji Kim, Su Ji Kang, Ji Hye Lee, Hyeong Seok Kim, Dongwon Lee, and Gilson Khang
Journal of Pharmaceutical Investigation, 2012, Volume 42, Number 5, Page 285
Myeong-Jun Oh, Jung-Bo Shim, Eun-Yong Lee, Han-Na Yoo, Won-Hyung Cho, Dong-Kyun Lim, Dong-Won Lee, and Gil-Son Khang
Journal of Pharmaceutical Investigation, 2011, Volume 41, Number 3, Page 179
Lei Jin, Ping Lu, Huanhuan You, Qiang Chen, and Jian Dong
International Journal of Pharmaceutics, 2009, Volume 371, Number 1-2, Page 82
Mohammad Rizwan, Mohammed Aqil, Adnan Azeem, Sushama Talegaonkar, Yasmin Sultana, and Asgar Ali
Journal of Experimental Nanoscience, 2010, Volume 5, Number 5, Page 390
Raghavendra C. Mundargi, V. Ramesh Babu, Vidhya Rangaswamy, and Tejraj M. Aminabhavi
Journal of Applied Polymer Science, 2011, Volume 119, Number 3, Page 1268

Comments (0)

Please log in or register to comment.
Log in