Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year

IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
See all formats and pricing
More options …
Volume 57, Issue 4


Design and evaluation of sustained release bilayer tablets of propranolol hydrochloride

Chinam Patra
  • P. G. Department of Pharmaceutics, College of Pharmaceutical Sciences, Berhampur-760002 Orissa, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Arethi Kumar
  • P. G. Department of Pharmaceutics, College of Pharmaceutical Sciences, Berhampur-760002 Orissa, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hemant Pandit
  • P. G. Department of Pharmaceutics, College of Pharmaceutical Sciences, Berhampur-760002 Orissa, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Satya Singh
  • P. G. Department of Pharmaceutics, College of Pharmaceutical Sciences, Berhampur-760002 Orissa, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Meduri Devi
  • P. G. Department of Pharmaceutics, College of Pharmaceutical Sciences, Berhampur-760002 Orissa, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2007-12-28 | DOI: https://doi.org/10.2478/v10007-007-0038-0

Design and evaluation of sustained release bilayer tablets of propranolol hydrochloride

The objective of the present research was to develop a bilayer tablet of propranolol hydrochloride using superdisintegrant sodium starch glycolate for the fast release layer and water immiscible polymers such as ethylcellulose, Eudragit RLPO and Eudragit RSPO for the sustaining layer. In vitro dissolution studies were carried out in a USP 24 apparatus I. The formulations gave an initial burst effect to provide the loading dose of the drug followed by sustained release for 12 h from the sustaining layer of matrix embedded tablets. In vitro dissolution kinetics followed the Higuchi model via a non-Fickian diffusion controlled release mechanism after the initial burst release. FT-IR studies revealed that there was no interaction between the drug and polymers used in the study. Statistical analysis (ANOVA) showed no significant difference in the cumulative amount of drug release after 15 min, but significant difference (p < 0.05) in the amount of drug released after 12 h from optimized formulations was observed.

Razvoj i vrednovanje dvoslojnih tableta propranolol hidroklorida

U radu je opisan razvoj dvoslojnih tableta propranolol hidroklorida, koristeći superdezintegrator škrob glikolat natrij u sloju za brzo oslobađanje i polimere koji se ne miješaju s vodom (etilceluloza, Eudragit RLPO i Eudragit RSPO) u sloju za usporeno oslobađanje. In vitro oslobađanje praćeno je u USP aparatu I te je uočeno početno naglo oslobađanje ljekovite tvari iza kojeg slijedi polagano oslobađanje tijekom 12 sati. In vitro kinetika oslobađanja prati Higouchijev model, dok mehanizam kontroliranog oslobađanja ne slijedi Fickov zakon poslije početnog naglog oslobađanja. FT-IR studije ukazuju da nema interakcije između ljekovite tvari i polimera upotrebljenih u oblikovanju. Statistička analiza (ANOVA) nije pokazala značajne razlike u kumulativnoj količini oslobođenog lijeka iz optimiranih formulacija poslije 15 minuta, ali polije 12 h još se ta količina značajno razlikovala (p < 0.05).

Keywords: propranolol hydrochloride; bilayer tablets; sodium starch glycolate; water immiscible polymers; statistical analysis

Keywords: propranolol hidroklorid; dvoslojne tablete; škrob glikolat natrij; polimeri koji se ne miješaju s vodom; statistička analiza

  • Martindale, The Extra Pharmacopoeia, 31st ed., The Pharmaceutical Press, London 1996, pp. 936-937.Google Scholar

  • M. J. Serlin, M. L. Orme, M. Maciver, G. J. Green, R. G. Sibeon and A. M. Beckenridge, Pharmacodynamics and pharmacokinetics of conventional and long acting propranolol in patients with moderate hypertension, J. Clin. Pharmcol.15 (1983) 519-526.Google Scholar

  • B. Taylan, Y. Capan, O. Guven, S. Kes and A. A. Hincal, Design and evaluation of sustained release and buccal adhesive propranolol hydrochloride tablets, J. Control. Rel.38 (1996) 11-20; DOI: 10.1016/0168-3654(95)00094-1.CrossrefGoogle Scholar

  • M. A. Abraham and A. Shirwaikar, Formulation of multilayered sustained release tablets using insoluble matrix system, Indian J. Pharm. Sci.59 (1997) 312-315.Google Scholar

  • J. P. Vercammen, D. Dauwe and P. Brioen, Possibility of use of Eudragit RS as a sustained release matrix agent for the incorporation of water soluble active compounds at high percentages, STP Pharma. Sci.7 (1997) 491-497.Google Scholar

  • S. B. Jayaswa, K. D. Gode and S. K. Khanna, Sustained release tablet formulation of propranolol hydrochloride with Eudragit, Aust. J. Pharm. Sci.9 (1980) 22-26.Google Scholar

  • S. N. Makhija and P. R. Vavia, Once daily sustained release tablets of venlafaxine, a novel anti-depressant, Eur. J. Pharm. Biopharm.54 (2002) 9-15; DOI: 10.1016/S0939-6411 (02) 00049-8.CrossrefGoogle Scholar

  • P. R. Katikaneni, S. M. Upadrashta, S. H. Neau and A. K. Mitra, Ethylcellulose matrix controlled release tablets of a water soluble drug, Int. J. Pharm.123 (1995) 119-125; DOI: 10.1016/0378-5173 (95)00060-V.CrossrefGoogle Scholar

  • G. Shlieout and G. Zessin, Investigation of ethylcellulose as a matrix former and a new method to regard and evaluate the compaction data, Drug Dev. Ind. Pharm.22 (1996) 313-319.Google Scholar

  • I. Pather, I. Russell, J. A. Syce and S. H. Neau, Sustained release theophylline tablets by direct compression, Part 1: formulation and in vitro testing, Int. J. Pharm.164 (1998) 1-10; DOI: 10.1016/ S0378-5173(97)00348-7.CrossrefGoogle Scholar

  • S. M. Upadrashta, P. R. Katikaneni, G. A. Hileman and P. R. Keshary, Direct compression controlled release tablets using ethylcellulose matrices, Drug Dev. Ind. Pharm.199 (1993) 449-460.Google Scholar

  • E. A. Rawlins, Formulation, in Bentley's Text Book of Pharmaceutics, 8th ed., Bailliere Tindall, London 1996, pp. 663-666.Google Scholar

  • K. E. Thummel, D. D. Shen, N. Isoherranen and H. E. Smith, Design and Optimization of Dosage Regimens; Pharmacokinetic Data, in Goodman and Gilman's The Pharmacological Basis of Therapeutics, 11th ed. (Eds. L. L. Bruton, J. S. Laro and K. L. Parker), McGraw-Hill Medical Publishing Division, London 2006, pp. 1863.Google Scholar

  • J. Staniforth, Powder Flow, in Pharmaceutics - the Science of Dosage Form Design, 2nd ed. (Ed. M. E. Aulton), Churchill Livingstone, London 2002, pp. 207-208.Google Scholar

  • A. Martin, P. Bustamante and A. Chun, Micromeritics, in Physical Pharmacy-Physical Chemical Principles in the Pharmaceutical Sciences, 4th ed., Lippincott Williams and Wilkins, Baltimore 2002, pp. 446-448.Google Scholar

  • H. C. Ansel, L. V. Allen and N. G. Popovich, Capsules and Tablets, in Pharmaceutical Dosage Forms and Drug Delivery Systems, 7th ed., Lippincott Williams & Wilkins, Philadelphia 2002, pp. 204-209.Google Scholar

  • USP 24/NF 19, USP Convention, Rockville 1999, pp. 1429.Google Scholar

  • H. A. Merchant, H. M. Shoaib, J. Tazeen and R. I. Yousuf, Once-daily tablet formulation and in vitro release evaluation of cefpodoxime using hydroxypropyl methylcellulose: A technical note, AAPS Pharm. Sci. Tech.7 (2006) Article 78; DOI: 10.1028/pt 070378.CrossrefGoogle Scholar

  • D. W. Bourne, Pharmacokinetics, in Modern Pharmaceutics, 4th ed. (Eds. G. S. Banker and C. T. Rhodes), Marcel Dekker, New York 2002, pp. 67-92.Google Scholar

  • T. Higuchi, Mechanism of sustained action medication, J. Pharm. Sci.52 (1963) 1145-1149.Google Scholar

  • R. W. Korsmeyer, R. Gurny, E. Docler, P. Buri and N. A. Peppas, Mechanism of solute release from porous hydrophilic polymers, Int. J. Pharm.15 (1983) 25-35; DOI: 10.1016/0378-5173(83) 90064-9.CrossrefGoogle Scholar

  • A. Stamm and J. C. Tritsch, Some consideration on the liberation of drugs from inert matrices, Drug Dev. Ind. Pharm.12 (1986) 2337-2353.Google Scholar

  • C. S. Lafuente, M. T. Fauci, M. F. Arevelo, J. A. Fuentes, A. M. Rabasco and P. Mura, Development of sustained release tablets of didanosine containing methacrylic and ethylcellulose polymers, Int. J. Pharm.234 (2002) 213-221; DOI. 10.1016/S0378-5173(10)00962-0.CrossrefGoogle Scholar

  • M. Guyot and F. Fawaz, Nifedipine loaded polymeric microspheres: preparation and physical characteristics, Int. J. Pharm.175 (1998) 61-74; DOI: 10.1016/S0378-5173(98)00253-1.CrossrefGoogle Scholar

  • N. A. Peppas, Analysis of Fickian and non Fickian drug release from polymers, Pharm. Acta Helv.60 (1985) 110-111.PubMedGoogle Scholar

  • J. Akubuga, Preparation and evaluation of controlled release furosemide microspheres by spherical crystallization, Int. J. Pharm.53 (1989) 99-105; DOI: 10.1016/0378-5173(89)90233-0.CrossrefGoogle Scholar

  • Y. Kawashima, T. Niwa, T. Handa, H. Takeuchi, T. Iwamoto and K. Itoh, Preparation of controlled release microspheres of ibuprofen with acrylic polymers by a novel quasi-emulsion solvent diffusion, J. Pharm. Sci.78 (1989) 68-72.Google Scholar

  • S. Haznedar and B. Dortunc, Preparation and in vitro evaluation of eudragit microspheres containing acetazolamide, Int. J. Pharm.269 (2004) 131-140; DOI: 10.1016/J.ijpharm.2003.09.015.CrossrefGoogle Scholar

About the article

Published Online: 2007-12-28

Published in Print: 2007-12-01

Citation Information: Acta Pharmaceutica, Volume 57, Issue 4, Pages 479–489, ISSN (Online) 1846-9558, ISSN (Print) 1330-0075, DOI: https://doi.org/10.2478/v10007-007-0038-0.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Hernawan, Septi Nur Hayati, Khoirun Nisa, Anastasia Wheni Indrianingsih, Cici Darsih, and Muhammad Kismurtono
IOP Conference Series: Earth and Environmental Science, 2017, Volume 101, Page 012038
Pravin Kondiba Pawar and Chinanshu Gautam
Journal of Pharmaceutical Investigation, 2016, Volume 46, Number 1, Page 67
Hira Ijaz, Junaid Qureshi, Zeeshan Danish, Muhammad Zaman, Mohamed Abdel-Daim, and Irfan Bashir
Advances in Polymer Technology, 2017, Volume 36, Number 2, Page 152
Harikrishna Boyapally, Ravi Kumar Nukala, and Dionysios Douroumis
Drug Delivery, 2009, Volume 16, Number 2, Page 67
Rui Gao, Bai-Wang Sun, Jun Lin, and Xiao-Li Gao
Journal of Thermal Analysis and Calorimetry, 2014, Volume 117, Number 2, Page 731
Kovanya Moodley, Viness Pillay, Yahya E. Choonara, Lisa C. du Toit, Valence M. K. Ndesendo, Pradeep Kumar, Shivaan Cooppan, and Priya Bawa
International Journal of Molecular Sciences, 2011, Volume 13, Number 12, Page 18
Shaban A. Khaled, Jonathan C. Burley, Morgan R. Alexander, and Clive J. Roberts
International Journal of Pharmaceutics, 2014, Volume 461, Number 1-2, Page 105
Pooja Sharma, Anuj Chawla, and Pravin Pawar
The Scientific World Journal, 2013, Volume 2013, Page 1
M. Y. Yang, Y. L. Wang, J. F. Guo, L. Shan, Y. Li, X. Q. Bai, Y. Z Fan, and C. S. Gao
Drug Development and Industrial Pharmacy, 2013, Volume 39, Number 1, Page 156
Phuong Ha-Lien Tran, Thao Truong-Dinh Tran, Jun Bom Park, and Beom-Jin Lee
Pharmaceutical Research, 2011, Volume 28, Number 10, Page 2353
Fridrun Podczeck and Emad Al-Muti
European Journal of Pharmaceutical Sciences, 2010, Volume 41, Number 3-4, Page 483
Meltem Cetin, Alptug Atila, Selma Sahin, and Imran Vural
Pharmaceutical Development and Technology, 2013, Volume 18, Number 3, Page 570

Comments (0)

Please log in or register to comment.
Log in