Jump to ContentJump to Main Navigation
Show Summary Details

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year

IMPACT FACTOR increased in 2015: 1.212
5-year IMPACT FACTOR: 1.620

SCImago Journal Rank (SJR) 2014: 0.353
Source Normalized Impact per Paper (SNIP) 2014: 0.743
Impact per Publication (IPP) 2014: 1.275

Open Access
See all formats and pricing
Volume 58, Issue 1 (Mar 2008)


Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: In vitro and in vivo evaluation

Amandeep Kaur
  • Department of Pharmaceutical Sciences, Drug Research Punjabi University, Patiala (Punjab) 147 002, India
/ Subheet Jain
  • Department of Pharmaceutical Sciences, Drug Research Punjabi University, Patiala (Punjab) 147 002, India
/ Ashok Tiwary
  • Department of Pharmaceutical Sciences, Drug Research Punjabi University, Patiala (Punjab) 147 002, India
Published Online: 2008-03-12 | DOI: https://doi.org/10.2478/v10007-007-0045-1

Mannan-coated gelatin nanoparticles for sustained and targeted delivery of didanosine: In vitro and in vivo evaluation

Macrophages of the reticuloendothelial system and brain act as major reservoir for HIV because of their long term survival after HIV infection and ability to spread virus particles to bystander CD4 positive lymphocyte cells. The objective of the present study was to investigate mannan-coated nanoparticles for macrophage targeting of didanosine. Different didanosine loaded nanoparticles were prepared using the double desolvation technique and were characterized in vitro, ex vivo and in vivo. Results of the ex vivo cellular uptake study indicated 5--fold higher uptake of didanosine from the mannan-coated nanoparticles formulation (62.5 ± 5.4%) by the macrophages in comparison with didanosine solution in phosphate buffer saline (PBS, pH 7.4) (12.1 ± 2.3%). The better cellular uptake from the nanoparticles formulation was further confirmed by fluorescence microscopy using hydrophilic 6-carboxyfluorescein as a marker. Results of the quantitative biodistribution study showed 1.7, 12.6 and 12.4 times higher localization of didanosine in the spleen, lymph nodes and brain, respectively, after administration of mannan-coated nanoparticles compared to that after injection of didanosine solution in PBS (pH 7.4). Results of the present study showed that the mannan-coated nanoparticles targeted didanosine to the macrophage by mannosyl receptor mediated endocytosis.

Želatinske nanočestice obložene mananom za polaganu i ciljanu isporuku didanozina: In vitro i in vivo vrednovanje

Makrofagi retikuloendotelnog sustava i mozak djeluju kao glavni rezervoari za HIV zbog njihovog dugoročnog preživljavanja nakon infekcije HIV-om i sposobnosti da usmjere virusne čestice u CD4 pozitivne limfocite. Cilj rada bio je ispitati nanočestice obložene mananom za ciljanu isporuku didanozina u makrofage. Koristeći metodu dvostruke desolvatacije pripravljene su različite nanočestice s didanozinom te su zatim karakterizirane in vitro, ex vivo i in vivo. Rezultati ex vivo ispitivanja ukazuju da je unos didanozina u makrofage 5 puta veći iz nanočestica obloženih mananom (62,5 ± 5,4%) u usporedbi s otopinom didanozina u fosfatnom puferu (PBS, pH 7,4) (12,1 ± 2,3%). Bolji celularni unos iz nanočestica potvrđen je fluorescentnom mikroskopijom koristeći hidrofilni 6-karboksifluorescein kao marker. Rezultati kvantitativne biodistribucije pokazuju da je lokalizacija didanozina u slezeni, limfnim čvorovima i mozgu 1,7, 12,6, odnosno 12,4 puta veća nakon primjene nanočestica obloženih mananom nego nakon primjene otopine didanozina u PBS-u (pH 7,4). Nanočestice s mananom usmjeravaju didanozin u makrofage procesom endocitoze u kojoj posreduju receptori za manozu.

Keywords: makrofag; ciljana terapija; didanozin; anti-HIV; manan; endocitoza posredovana receptorima

Keywords: makrofag; ciljana terapija; didanozin; anti-HIV; manan; endocitoza posredovana receptorima

  • M. S. Meltzer, D. R. Skillman, P. J. Gomatos, D. C. Kalter and H. C. Gendelman, Role of mononuclear phagocytosis in the pathogenesis of human immunodeficiency virus infection, Annu. Rev. Immunol.8 (1990)169-194; DOI: 10.1146/annurev.iy.08.040190.001125. [Crossref]

  • S. Aquaro, R. Calio, J. Balzarini, M. C. Bellocchi, E. Garaci and C. F. Perno, Macrophages and HIV infection: therapeutical approaches toward this strategic virus reservoir, Antiviral Res.55 (2002) 209-225; DOI: 10.1016/S0166-3542(02)00052-9. [Crossref] [PubMed]

  • C. Oussoren, M. Magnani, A. Fraternale, A. Casabianca, L. Chiarantini, R. Ingebrigsten, W. J. M. Underberg and G. Strome, Liposomes as carrier of the antiretroviral agent dideoxycytidine-5'-triphosphate, Int. J. Pharm.180 (1999) 261-270; DOI: 10.1016/S0378-5173(99)00016-2. [Crossref]

  • V. Schafer, H. V. Briesen, H. Rubsamen-Waigmann, A. M. Steffan, C. Royer and J. Kreuter, Phagocytosis and degradation of human serum albumin microspheres and nanoparticles in human macrophages, J. Microencaps.11 (1994) 261-269; DOI: 10.3109/02652049409040455. [Crossref]

  • Z. Cui, C. H. Hsu and R. J. Mumper, Physical characterization and macrophage cell uptake of mannan-coated nanoparticles, Drug Dev. Ind. Pharm.29 (2003) 689-700; DOI: 10.1081/DDC-120021318. [Crossref] [PubMed]

  • F. Ahsan, I. P. Rivas, M. A. Khan and A. I. T. Suarez, Targeting of macrophage: role of physicochemical properties of particulate carriers-liposomes and microsphere on the phagocytosis by macrophages, J. Control. Rel.79 (2002) 29-40; DOI: 10.1016/S0168-3659(01)00549-1. [Crossref]

  • J. Kreuter, Nanoparticulate system for brain delivery of drugs, Adv. Drug Deliv. Rev.47 (2001) 65-81; DOI: 10.1016/S0169-409X(00)00122-8. [Crossref]

  • M. S. Wadhwa and K. G. Rice, Receptor mediated glycotargeting, J. Drug Target.11 (2003) 255-268; DOI: 10.1080/10611860310001636557. [Crossref]

  • J. Shao and J. K. H. Ma, Characterization of mannosylphospholipid liposome system for drug targeting to alveolar macrophages, J. Drug Deliv. Target. Ther. Agents4 (1997) 43-48.

  • Y. Gabr, N. Assem, A. Micheal and L. Fahmy, Evaluation studies on oxypolygelatin and degraded gelatin as plasma volume expanders, Arzneimittelforschung46 (1996) 763-766.

  • R. Yarchoan, H. Mitsuya, R. V. Thomas, J. M. Pluda, N. R. Hartman and C. F. Perno, In vivo activity against HIV and favorable toxicity profile of 2'3'-dideoxyinosine, Science245 (1989) 412-417.

  • T. P. Cooley, M. L. Kunches, C. A. Saunders, C. J. Perkins, S. L. Kelley, C. McLaren, R. P. McCaffrey and H. A Liebman, Treatment of AIDS and AIDS related complex with 2'3'-dideoxyinosine given once daily, Rev. Infect. Dis.12 (1990) S552-S560. [Crossref]

  • C. J. Coester, K. Langer, H. Von Briesen and J. Kreuter, Gelatin nanoparticles by two step desolvation - A new preparation method, surface modification and cell uptake, J. Microencaps.17 (2000) 187-193; DOI: 10.1080/026520400288427. [Crossref]

  • J. Vandervoort and A. Ludwig, Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use, Eur. J. Pharm. Biopharm.57 (2004) 251-261; DOI: 10.1016/S0939-6411(03)00187-5. [Crossref]

  • E. Rebasamen, W. Goldinger, W. Scheirer, O. W. Merten and G. E. Palfe, Development in Biological Standardization, in Advances in Animal Cell Technology and Cell Engineering: Evaluation and Exploitation (Eds. R. Spier and W. Hennessen), Vol. 66, ESACT, Basel 1987, pp. 557-583.

  • V. F. Courtney, R. C. Brundage, R. P. Remmel, L. M. Page, D. Weller, N. R. Calles, C. Simon and M. W. Kline, Pharmacologic characteristic of indinavir, didanosine and stavudine in human immunodeficiency virus-infected children receiving combination therapy, Antimicrob. Agents Chemother.44 (2000) 1029-1034.

  • S. Jain, R. Sapre, A. K. Tiwary and N. K. Jain, Proultraflexible lipid vesicles for effective transdermal delivery of levonorgestrel: Development, characterization and performance evaluation, AAPS PharmSciTech.6 (2005) E513-E522; DOI: 10.1208/pt060364. [Crossref]

  • S. Kaul, W. C. Shyu, U. A. Shukla, K. A. Dandekar and R. H. Barbhaiya, Pharmacologic characteristic of indinavir, didanosine and stavudine in human immunodeficiency Virus-Infected children receiving combination therapy, Drug Metab. Dispos.21 (1993) 447-453.

  • E. Mukherji, N. J. Millenbaugh and J. L. S. Au, Percutaneous absorption of 2',3'-dideoxyinosine in rats, Pharm. Res.11 (1994) 809-815.

  • O. Bekers, J. H. Beijnen, M. J. T. Klein Tank, D. M. Burger, P. I. Meenhorst, A. J. P. F. Lombarts and W. J. M. Underberg, 2',3'-dideoxyinosine (ddI): Its chemical stability and cyclodextrin complexation in aqueous media, J. Pharm. Biomed. Anal.11 (1993) 489-493; DOI: 10.1016/0731-7085(93)80162-T. [Crossref]

  • P. T. Tayade and R. D. Kale, Encapsulation of water-insoluble drug by a cross-linking technique: Effect of process and formulation variables on encapsulation efficiency, particle size, and in vitro dissolution rate, AAPS Pharm. Sci6 (2004); DOI: 10.1208/ps060112. [Crossref]

  • C. Sanchez-Lafuente, A. M. Rabasco, J. Alvarez-Fuentes and M. Fernandez-Arevalo, Eudragit® RS-PM and Ethocel® 100 premium: influence over the behavior of didanosine inert matrix system, Farmaco57 (2002) 649-656; DOI: 10.1016/S0014-827X(02)01240-5. [Crossref]

  • V. Apostolopoulos and I. F. McKenzie, Role of the mannose receptor in the immune response, Curr. Mol. Med.1 (2001) 469-474; DOI:10.2174/1566524013363645. [Crossref]

  • C. A. Hoppe and Y. C. Lee, The binding and processing of mannose-bovine serum albumin derivatives by rabbit alveolar macrophages. Effect of the sugar density, J. Biol. Chem.258 (1983) 14193-14199.

  • M. Velinova, N. Read, C. Kirby and G. Gregoriadis, Morphological observation on the fate of liposomes in the regional lymph nodes after footpad injection into rats, Biochim. Biophys. Acta1299 (1996) 207-215; DOI: 10.1016/0005-2760(95)00208-1. [Crossref]

About the article

Published Online: 2008-03-12

Published in Print: 2008-03-01

Citation Information: Acta Pharmaceutica, ISSN (Online) 1846-9558, ISSN (Print) 1330-0075, DOI: https://doi.org/10.2478/v10007-007-0045-1. Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Arif Gulzar, Shili Gai, Piaoping Yang, Chunxia Li, Mohd Bismillah Ansari, and Jun Lin
J. Mater. Chem. B, 2015, Volume 3, Number 44, Page 8599
Maytal Foox and Meital Zilberman
Expert Opinion on Drug Delivery, 2015, Page 1
Classius Ferreira da Silva, Patrícia Severino, Fernanda Martins, Maria Helena A. Santana, and Eliana B. Souto
Biomedicine & Pharmacotherapy, 2015, Volume 70, Page 46
Katia P. Seremeta, Christian Höcht, Carlos Taira, Pablo R. Cortez Tornello, Gustavo A. Abraham, and Alejandro Sosnik
J. Mater. Chem. B, 2015, Volume 3, Number 1, Page 102
Katia P. Seremeta, María I. Reyes Tur, Sandra Martínez Pérez, Christian Höcht, Carlos Taira, Orestes D. López Hernández, and Alejandro Sosnik
Colloids and Surfaces B: Biointerfaces, 2014, Volume 123, Page 515
Lakshmi Narashimhan Ramana, Appakkudal R. Anand, Swaminathan Sethuraman, and Uma Maheswari Krishnan
Journal of Controlled Release, 2014, Volume 192, Page 271
Azita Haddadi, Samar Hamdy, Zahra Ghotbi, John Samuel, and Afsaneh Lavasanifar
Nanotechnology, 2014, Volume 25, Number 35, Page 355101
S. Saranya and K. V. Radha
Polymer-Plastics Technology and Engineering, 2014, Volume 53, Number 15, Page 1636
Raveen Parboosing, Glenn E. M. Maguire, Patrick Govender, and Hendrik G. Kruger
Viruses, 2012, Volume 4, Number 12, Page 488
Arpan Chudasama, Vineetkumar Patel, Manish Nivsarkar, Kamala Vasu, and Chamanlal Shishoo
Drug Delivery, 2015, Volume 22, Number 4, Page 531
Shardool Jain, Aatman S. Doshi, Arun K. Iyer, and Mansoor M. Amiji
Journal of Drug Targeting, 2013, Volume 21, Number 10, Page 888
Josephine Leno Jenita Joseph, Vijaya Chockalingam, and Wilson Barnabas
Journal of Pharmacy Research, 2013, Volume 7, Number 8, Page 712
Marnix A Lameijer, Jun Tang, Matthias Nahrendorf, Robert H J Beelen, and Willem J M Mulder
Expert Review of Molecular Diagnostics, 2013, Volume 13, Number 6, Page 567
Shilpi Goswami, Jaya Bajpai, and A. K. Bajpai
Journal of Macromolecular Science, Part A, 2009, Volume 47, Number 2, Page 119
Aaron N. Endsley and Rodney J.Y. Ho
JAIDS Journal of Acquired Immune Deficiency Syndromes, 2012, Volume 61, Number 4, Page 417
Gurudutta Pattnaik, Biswadip Sinha, Biswajit Mukherjee, Saikat Ghosh, Sandip Basak, Subhasish Mondal, and Tanmoy Bera
Journal of Microencapsulation, 2012, Volume 29, Number 7, Page 666
Yan Chen and Lihong Liu
Advanced Drug Delivery Reviews, 2012, Volume 64, Number 7, Page 640
Avnesh Kumari, Sudesh Kumar Yadav, and Subhash C. Yadav
Colloids and Surfaces B: Biointerfaces, 2010, Volume 75, Number 1, Page 1
Gaurav Kant Saraogi, Puspa Gupta, U.D. Gupta, N.K. Jain, and G.P. Agrawal
International Journal of Pharmaceutics, 2010, Volume 385, Number 1-2, Page 143
Elizabeth Ojewole, Irene Mackraj, Panjasaram Naidoo, and Thirumala Govender
European Journal of Pharmaceutics and Biopharmaceutics, 2008, Volume 70, Number 3, Page 697
Alejandro Sosnik, Diego A. Chiappetta, and Ángel M. Carcaboso
Journal of Controlled Release, 2009, Volume 138, Number 1, Page 2
José das Neves, Mansoor M. Amiji, Maria Fernanda Bahia, and Bruno Sarmento
Advanced Drug Delivery Reviews, 2010, Volume 62, Number 4-5, Page 458
Gaurav Kant Saraogi, Bhavna Sharma, Beenu Joshi, Pushpa Gupta, Umesh Dutta Gupta, Narendra Kumar Jain, and Govind Prasad Agrawal
Journal of Drug Targeting, 2011, Volume 19, Number 3, Page 219
Ari Nowacek and Howard E Gendelman
Nanomedicine, 2009, Volume 4, Number 5, Page 557
Wangyang Yu, Chunxi Liu, Yu Liu, Na Zhang, and Wenfang Xu
Pharmaceutical Research, 2010, Volume 27, Number 8, Page 1584

Comments (0)

Please log in or register to comment.
Log in