Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year


IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
Online
ISSN
1846-9558
See all formats and pricing
More options …
Volume 61, Issue 1 (Mar 2011)

Issues

Metal ions, Alzheimer's disease and chelation therapy

Ana Budimir
Published Online: 2011-03-15 | DOI: https://doi.org/10.2478/v10007-011-0006-6

Metal ions, Alzheimer's disease and chelation therapy

In the last few years, various studies have been providing evidence that metal ions are critically involved in the pathogenesis of major neurological diseases (Alzheimer, Parkinson). Metal ion chelators have been suggested as potential therapies for diseases involving metal ion imbalance. Neurodegeneration is an excellent target for exploiting the metal chelator approach to therapeutics. In contrast to the direct chelation approach in metal ion overload disorders, in neurodegeneration the goal seems to be a better and subtle modulation of metal ion homeostasis, aimed at restoring ionic balance. Thus, moderate chelators able to coordinate deleterious metals without disturbing metal homeostasis are needed. To date, several chelating agents have been investigated for their potential to treat neurodegeneration, and a series of 8-hydroxyquinoline analogues showed the greatest potential for the treatment of neurodegenerative diseases.

Kovinski ioni, Alzheimerova bolest i kelacijska terapija

Najnovija istraživanja na polju neurodegeneracije jasno pokazuju da kovinski ioni imaju značajnu ulogu u patogenezi Alzheimerove kao i drugih neurodegenerativnih bolesti. U skladu s ovim spoznajama upotreba kovinskih kelatora predstavlja zanimljiv i inovativan farmakološki pristup daljnjem istraživanju i mogućoj terapiji neurodegenerativnih stanja. U ovom radu ukratko je dan sažetak istraživanja upotrebe kovinskih kelatora u tretmanu Alzheimerove bolesti s posebnim osvrtom na istraživanja analoga 8-hidroksikinolina.

Keywords: metal ions; Alzheimer's disease; neurodegeneration; metal chelators; chelation therapy

Keywords: kovinski ioni; Alzheimerova bolest; neurodegeneracija; kovinski kelatori; kelacijska terapija

  • D. M. Skovronsky, V. M.-Y. Lee and J. Q. Trojanowski, Neurodegenerative diseases: New concepts of pathogenesis and their therapeutic implications, Annu. Rev. Pathol. Mech. Dis. 1 (2006) 151-170; DOI: 10.1146/annurev.pathol.1.110304.100113.CrossrefGoogle Scholar

  • R. Mayeux, Epidemiology of neurodegeneration, Annu. Rev. Neurosci. 26 (2003) 81-104; DOI: 10.1146/annurev.neuro.26.043002.094919.CrossrefGoogle Scholar

  • C. P. Ferri, R. Sousa, E. Albanese, W. S. Ribeiro and M. Honyashiki, World Alzheimer Report 2009 - Executive Summary (Eds. M. Prince and J. Jadeson), Alzheimer's Disease International, London 2009, pp. 1-22; http://www.alz.co.uk/adi/publications.html

  • F. M. LaFerla and S. Oddo, Alzheimer's disease: Aβ, tau and synaptic dysfunction, Trends Mol. Med. 11 (2005) 170-176; DOI: 10.1016/j.molmed.2005.02.009.CrossrefPubMedGoogle Scholar

  • M. Tolnay and A. Probst, Tau protein pathology in Alzheimer's disease and related disorders, Neuropathol. Appl. Neurobiol. 25 (1999) 171-187; DOI: 10.1046/j.1365-2990.1999.00182.x.CrossrefGoogle Scholar

  • C. Ballatore, V. M.-Y. Lee and J. Q. Trojanowski, Tau-mediated neurodegeneration in Alzheimer's disease and related disorders, Nature Rev. Neurosci. 8 (2007) 663-672; DOI: 10.1038/nrn2194.CrossrefGoogle Scholar

  • C. W. Scott, A. Fieles, L. A. Sygowski and C. B. Caputo, Aggregation of tau protein by aluminum, Brain Res. 628 (1993) 77-84; DOI: 10.1016/0006-8993(93)90940-O.CrossrefGoogle Scholar

  • A. Yamamoto, R.-W. Shin, K. Hasegawa, H. Naiki, H. Sato, F. Yoshimasu and T. Kitamoto, Iron (III) induces aggregation of hyperphosphorylated tau, and its reduction to iron (II) reverses the aggregation: implications in the formation of neurofibrillary tangles of Alzheimer's disease, J. Neurochem. 86 (2003) 1137-1147; DOI: 10.1046/j.1471-4159.2002.01061.x.CrossrefGoogle Scholar

  • R.-W. Shin, T. P. A. Kruck, H. Murayama and T. Kitamoto, A novel trivalent cation chelator Feralex dissociates binding of aluminum and iron associated with hyperphosphorylated tau of Alzheimer's disease, Brain Res. 961 (2003) 139-146; DOI: 10.1016/S0006-8993(02)03893-3.CrossrefGoogle Scholar

  • T. Lührs, C. Ritter, M. Adrian, D. Riek-Loher, B. Bohrmann, H. Döbeli, D. Schubert and R. Riek, 3D structure of Alzheimer's amyloid-β (1-42) fibrils, Proc. Natl Acad. Sci. USA 102 (2005) 17342-17347; DOI: 10.1073/pnas.0506723102.CrossrefGoogle Scholar

  • W. P. Esler and M. S. Wolfe, A portrait of Alzheimer secretases - new features and familiar faces, Science 293 (2001) 1449-1454; DOI: 10.1126/science.1064638.CrossrefGoogle Scholar

  • M. P. Mattson, Pathways towards and away from Alzheimer's disease, Nature 430 (2004) 631-639; DOI: 10.1038/nature02621.CrossrefGoogle Scholar

  • M. Shoji, T. Golde, J. Ghiso, T. Cheung, S. Estus, L. Shaffer, X. Cai, D. McKay, R. Tintner and B. Frangione, Production of the Alzheimer amyloid beta protein by normal proteolytic processing, Science 258 (1992) 126-129; DOI: 10.1126/science.1439760.CrossrefGoogle Scholar

  • C. L. Masters, G. Simms, N. A. Weinman, G. Multhaup, B. L. McDonald and K. Beyreuther, Amyloid plaque core protein in Alzheimer disease and Down syndrome, Proc. Natl Acad. Sci. USA 82 (1985) 4245-4249; DOI: 10.1073/pnas.82.12.4245.CrossrefGoogle Scholar

  • B. Clippingdale, J. D. Wade and C. J. Barrow, The amyloid-β peptide and its role in Alzheimer's disease, J. Peptide Sci. 7 (2001) 227-249; DOI: 10.1002/psc.324.abs.CrossrefGoogle Scholar

  • C. Vigo-Pelfrey, D. Lee, P. Keim, I. Lieberburg and D. B. Schenk, Amyloid peptide from human cerebrospinal fluid, J. Neurochem. 61 (1993) 1965-1968; DOI: 10.1111/j.1471-4159.1993.tb09841.x.CrossrefGoogle Scholar

  • P. Seubert, C. Vigo-Pelfrey, F. Esch, M. Lee, H. Dovey, D. Davis, S. Sinha, M. Schiossmacher, J. Whaley, C. Swindlehurst, R. McCormack, R. Wolfert, D. Selkoe, I. Lieberburg and D. Schenk, Isolation and quantification of soluble Alzheimer's β-peptide from biological fluids, Nature 359 (1992) 325-327; DOI: 10.1038/359325a0.CrossrefGoogle Scholar

  • J. T. Jarret, E. P. Berger and P. T. Lansbury, The C-terminus of the β protein is critical in amyloidogenesis, Ann. NY Acad. Sci. USA 695 (1993) 144-148; DOI: 10.1111/j.1749-6632.1993.tb23043.x.CrossrefGoogle Scholar

  • A. Lorenzo and B. A. Yankner, Beta-amyloid neurotoxicity requires fibril formation and is inhibited by congo red, Proc. Natl. Acad. Sci. USA 91 (1994) 12243-12247; DOI: 10.1073/pnas.91.25.12243.CrossrefGoogle Scholar

  • J. Hardy and D. J. Selkoe, The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics, Science 297 (2002) 353-356; DOI: 10.1126/science.1072994.CrossrefGoogle Scholar

  • H. Kozlowski, A. Janicka-Klos, J. Brasun, E. Gaggelli, D. Valensin and G. Valensin, Copper, iron, and zinc ions homeostasis and their role in neurodegenerative disorders (metal uptake, transport, distribution and regulation), Coord. Chem. Rev. 253 (2009) 2665-2685; DOI: 10.1016/j.ccr.2009.05.011.CrossrefGoogle Scholar

  • Y. Hung, A. Bush and R. Cherny, Copper in the brain and Alzheimer's disease, J. Biol. Inorg. Chem. 15 (2010) 61-76; DOI: 10.1007/s00775-009-0600-y.CrossrefGoogle Scholar

  • P. J. Crouch, K. J. Barnham, A. I. Bush and A. R. White, Therapeutic Treatments for Alzheimer's disease based on metal bioavailability, Drug News Perspect. 19 (2006) 469-474; DOI: 10.1358/dnp.2006.19.8.1021492.CrossrefGoogle Scholar

  • M. A. Lovell, J. D. Robertson, W. J. Teesdale, J. L. Campbell and W. R. Markesbery, Copper, iron and zinc in Alzheimer's disease senile plaques, J. Neurol. Sci. 158 (1998) 47-52; DOI: 10.1016/S0022-510X(98)00092-6.CrossrefGoogle Scholar

  • C. S. Atwood, R. D. Moir, X. Huang, R. C. Scarpa, N. M. E. Bacarra, D. M. Romano, M. A. Hartshorn, R. E. Tanzi and A. I. Bush, Dramatic aggregation of Alzheimer Aβ by Cu(II) is induced by conditions representing physiological acidosis, J. Biol. Chem. 273 (1998) 12817-12826; DOI: 10.1074/jbc.273.21.12817.CrossrefGoogle Scholar

  • B. Raman, T. Ban, K.-I. Yamaguchi, M. Sakai, T. Kawai, H. Naiki and Y. Goto, Metal ion-dependent effects of clioquinol on the fibril growth of an amyloid β peptide, J. Biol. Chem. 280 (2005) 16157-16162; DOI: 10.1074/jbc.M500309200.CrossrefGoogle Scholar

  • P. Faller, Copper and zinc binding to amyloid-β: Coordination, dynamics, aggregation, reactivity and metal-ion transfer, ChemBioChem 10 (2009) 2837-2845; DOI: 10.1002/cbic.200900321.PubMedCrossrefGoogle Scholar

  • C. Hureau and P. Faller, A[beta]-mediated ROS production by Cu ions: Structural insights, mechanisms and relevance to Alzheimer's disease, Biochimie 91 (2009) 1212-1217; DOI: 10.1016/j.biochi.2009.03.013.CrossrefGoogle Scholar

  • M. A. Deibel, W. D. Ehmann and W. R. Markesbery, Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer's disease: possible relation to oxidative stress, J. Neurol. Sci. 143 (1996) 137-142; DOI: 10.1016/S0022-510X(96)00203-1.CrossrefGoogle Scholar

  • M. C. Boll, M. Alcaraz-Zubeldia, S. Montes and C. Rios, Free copper, ferroxidase and SOD1 activities, lipid peroxidation and NO(x) content in the CSF. A different marker profile in four neurodegenerative diseases, Neurochem. Res. 33 (2008) 1717-1723; DOI: 10.1007/s11064-008-9610-3.CrossrefGoogle Scholar

  • I. Maurer, S. Zierz and H. J. Moller, A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients, Neurobiol. Aging 21 (2000) 455-462; DOI: 10.1016/S0197-4580(00) 00112-3.CrossrefGoogle Scholar

  • Q. Ma, Y. Li, J. Du, H. Liu, K. Kanazawa, T. Nemoto, H. Nakanishi and Y. Zhao, Copper binding properties of a tau peptide associated with Alzheimer's disease studied by CD, NMR, and MALDI-TOF MS, Peptides 27 (2006) 841-849; DOI: 10.1016/j.peptides.2005.09.002.PubMedCrossrefGoogle Scholar

  • N. T. Watt, I. J. Whitehouse and N. M. Hooper, The role of zinc in Alzheimer's disease, Int. J. Alzheimer's Dis. 2011 (2011) in press; DOI: 10.4061/2011/971021.CrossrefGoogle Scholar

  • A. Bush, W. Pettingell, G. Multhaup, M. D. Paradis, J. Vonsattel, J. Gusella, K. Beyreuther, C. Masters and R. Tanzi, Rapid induction of Alzheimer A beta amyloid formation by zinc, Science 265 (1994) 1464-1467; DOI: 10.1126/science.8073293.CrossrefGoogle Scholar

  • K. H. Lim, Y. K. Kim and Y.-T. Chang, Investigations of the molecular mechanism of metal-induced Aβ (1-40) amyloidogenesis, Biochemistry 46 (2007) 13523-13532; DOI: 10.1021/bi701112z.CrossrefGoogle Scholar

  • C. Talmard, L. Guilloreau, Y. Coppel, H. Mazarguil, and P. Faller, Amyloid-beta peptide forms monomeric complexes with CuII and ZnII prior to aggregation, ChemBioChem 8 (2007) 163-165; DOI: 10.1002/cbic.200600319.CrossrefPubMedGoogle Scholar

  • M. P. Cuajungco and K. Y. Faget, Zinc takes the center stage: its paradoxical role in Alzheimer's disease, Brain Res. Rev. 41 (2003) 44-56; DOI: 10.1016/S0165-0173(02)00219-9.CrossrefGoogle Scholar

  • Z.-Y. Mo, Y.-Z. Zhu, H.-L. Zhu, J.-B. Fan, J. Chen and Y. Liang, Low micromolar zinc accelerates the fibrillization of human tau via bridging of Cys-291 and Cys-322, J. Biolog. Chem. 284 (2009) 34648-34657; DOI: 10.1074/jbc.M109.058883.CrossrefGoogle Scholar

  • P. W. Mantyh, J. R. Ghilardi, S. Rogers, E. DeMaster, C. J. Allen, E. R. Stimson and J. E. Maggio, Aluminum, iron, and zinc ions promote aggregation of physiological concentrations of β-amyloid peptide, J. Neurochem. 61 (1993) 1171-1174; DOI: 10.1111/j.1471-4159.1993.tb03639.x.CrossrefGoogle Scholar

  • C. Opazo, X. Huang, R. A. Cherny, R. D. Moir, A. E. Roher, A. R. White, R. Cappai, C. L. Masters, R. E. Tanzi, N. C. Inestrosa and A. I. Bush, Metalloenzyme-like activity of Alzheimer's disease β-amyloid, J. Biol. Chem. 277 (2002) 40302-40308; DOI: 10.1074/jbc.M206428200.CrossrefGoogle Scholar

  • D. G. Smith, R. Cappai and K. J. Barnham, The redox chemistry of the Alzheimer's disease amyloid beta peptide, Biochim. Biophysi. Acta - Biomembranes 1768 (2007) 1976-1990; DOI: 10.2217/14796708.2.4.397.CrossrefGoogle Scholar

  • P. F. Good, D. P. Perl, L. M. Bierer and J. Schmeidler, Selective accumulation of aluminum and iron in the neurofibrillary tangles of Alzheimer's disease: A laser microprobe (LAMMA) study, Ann. Neurol. 31 (1992) 286-292; DOI: 10.1002/ana.410310310.CrossrefGoogle Scholar

  • I. Klatzo, H. Wisniewski and E. Streicher, Experimental production of neurofibrillary degeneration: 1. Light microscopic observations, J. Neuropathol. Exp. Neurol. 24 (1965) 187-199; DOI: 10.1097/00005072-196504000-00002.CrossrefGoogle Scholar

  • R. D. Terry and C. Pena, Experimental production of neurofibrillary degeneration: 2. Electron microscopy, phosphatase histochemistry and electron prose analysis, J. Neuropathol. Exp. Neurol. 24 (1965) 200-210; DOI: 10.1097/00005072-196504000-00003.CrossrefGoogle Scholar

  • D. Drago, M. Bettella, S. Bolognin, L. Cendron, J. Scancar, R. Milacic, F. Ricchelli, A. Casini, L. Messori, G. Tognon and P. Zatta, Potential pathogenic role of β-amyloid1-42-aluminum complex in Alzheimer's disease, Int. J. Biochem. Cell Biol. 40 (2008) 731-746; DOI: 10.1016/j.biocel.2007.10.014.CrossrefGoogle Scholar

  • A. Rauk, The chemistry of Alzheimer's disease, Chem. Soc. Rev. 38 (2009) 2698-2715; DOI: 10.1039/b807980n.PubMedCrossrefGoogle Scholar

  • L. E. Scott and C. Orvig, Medicinal inorganic chemistry approaches to passivation and removal of aberrant metal ions in disease, Chem. Rev. 109 (2009) 4885-4910; DOI: 10.1021/cr9000176.CrossrefGoogle Scholar

  • J. A. Duce and A. I. Bush, Biological metals and Alzheimer's disease: Implications for therapeutics and diagnostics, Prog. Neurobiol. 92 (2010) 1-18; DOI: 10.1016/j.pneurobio.2010.04.003.CrossrefGoogle Scholar

  • I. Bush and R. E. Tanzi, Therapeutics for Alzheimer's disease based on the metal hypothesis, Neurotherapeutics 5 (2008) 421-432; DOI: 10.1016/j.nurt.2008.05.001.PubMedCrossrefGoogle Scholar

  • A. Gaeta and R. C. Hider, The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy, Br. J. Pharmacol. 146 (2005) 1041-1059; DOI: 10.1038/sj.bjp.0706416.CrossrefGoogle Scholar

  • P. Zatta, D. Drago, S. Bolognin and S. L. Sensi, Alzheimer's disease, metal ions and metal homeostatic therapy, Trends Pharmacol. Sci. 30 (2009) 346-355; DOI: 10.1016/j.tips.2009.05.002.CrossrefPubMedGoogle Scholar

  • L. R. Perez and K. J. Franz, Minding metals: Tailoring multifunctional chelating agents for neurodegenerative disease, Dalton Trans. 39 (2010) 2177-2187; DOI: 10.1039/b919237a.CrossrefPubMedGoogle Scholar

  • D. R. C. McLachlan, T. P. A. Kruck, W. Kalow, D. F. Andrews, A. J. Dalton, M. Y. Bell and W. L. Smith, Intramuscular desferrioxamine in patients with Alzheimer's disease, Lancet 337 (1991) 1304-1308; DOI: 10.1016/0140-6736(91)92978-B.CrossrefGoogle Scholar

  • R. A. Cherny, J. T. Legg, C. A. McLean, D. P. Fairlie, X. Huang, C. S. Atwood, K. Beyreuther, R. E. Tanzi, C. L. Masters and A. I. Bush, Aqueous dissolution of Alzheimer's disease abeta amyloid deposits by biometal depletion, J. Biol. Chem. 274 (1999) 23223-23228; DOI: 10.1074/jbc.274.33.23223.CrossrefGoogle Scholar

  • R. A. Cherny, K. J. Barnham, T. Lynch, I. Volitakis, Q.-X. Li, C. A. McLean, G. Multhaup, K. Beyreuther, R. E. Tanzi, C. L. Masters and A. I. Bush, Chelation and intercalation: Complementary properties in a compound for the treatment of Alzheimer's disease, J. Struct. Biol. 130 (2000) 209-216; DOI: 10.1006/jsbi.2000.4285.CrossrefGoogle Scholar

  • C. Boldron, I. Van der Auwera, C. Deraeve, H. Gornitzka, S. Wera, M. Pitié, F. Van Leuven and B. Meunier, Preparation of cyclo-phen-type ligands: Chelators of metal ions as potential therapeutic agents in the treatment of neurodegenerative diseases, ChemBioChem 6 (2005) 1976-1980; DOI: 10.1002/cbic.200500220.CrossrefGoogle Scholar

  • A. Dedeoglu, K. Cormier, S. Payton, K. A. Tseitlin, J. N. Kremsky, L. Lai, X. Li, R. D. Moir, R. E. Tanzi, A. I. Bush, N. W. Kowall, J. T. Rogers and X. Huang, Preliminary studies of a novel bifunctional metal chelator targeting Alzheimer's amyloidogenesis, Exp. Gerontol. 39 (2004) 1641-1649; DOI: 10.1016/j.exger.2004.08.016.CrossrefGoogle Scholar

  • Z. Cui, P. R. Lockman, C. S. Atwood, C.-H. Hsu, A. Gupte, D. D. Allen and R. J. Mumper, Novel D-penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer's and other CNS diseases, Eur. J. Pharm. Biopharm. 59 (2005) 263-272; DOI: 10.1016/j.ejpb.2004.07.009.CrossrefGoogle Scholar

  • J.-Y. Lee, J. E. Friedman, I. Angel, A. Kozak and J.-Y. Koh, The lipophilic metal chelator DP-109 reduces amyloid pathology in brains of human [beta]-amyloid precursor protein transgenic mice, Neurobiol. Aging 25 (2004) 1315-1321; DOI: 10.1016/j.neurobiolaging.2004.01.005.Google Scholar

  • V. Moret, Y. Laras, N. Pietrancosta, C. Garino, G. Quelever, A. Rolland, B. Mallet, J. C. Norreel and J. L. Kraus, 1,1 '-Xylyl bis-1,4,8,11-tetraaza cyclotetradecane: A new potential copper chelator agent for neuroprotection in Alzheimer's disease. Its comparative effects with clioquinol on rat brain copper distribution, Bioorg. Med. Chem. Lett. 16 (2006) 3298-3301; DOI: 10.1016/j.bmcl.2006.03.026.Google Scholar

  • H. Zheng, S. Gal, L. M. Weiner, O. Bar-Am, A. Warshawsky, M. Fridkin and M. B. H. Youdim, Novel multifunctional neuroprotective iron chelator-monoamine oxidase inhibitor drugs for neurodegenerative diseases: in vitro studies on antioxidant activity, prevention of lipid peroxide formation and monoamine oxidase inhibition, J. Neurochem. 95 (2005) 68-78; DOI: 10.1111/j.1471-4159.2005.03340.x.CrossrefGoogle Scholar

  • D. Kaur, F. Yantiri, S. Rajagopalan, J. Kumar, J. Q. Mo, R. Boonplueang, V. Viswanath, R. Jacobs, L. Yang, M. F. Beal, D. DiMonte, I. Volitaskis, L. Ellerby, R. A. Cherny, A. I. Bush and J. K. Andersen, Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: A novel therapy for Parkinson's disease, Neuron 37 (2003) 899-909; DOI: 10.1016/S0896-6273 (03)00126-0.CrossrefGoogle Scholar

  • R. A. Cherny, C. S. Atwood, M. E. Xilinas, D. N. Gray, W. D. Jones, C. A. McLean, K. J. Barnham, I. Volitakis, F. W. Fraser, Y.-S. Kim, X. Huang, L. E. Goldstein, R. D. Moir, J. T. Lim, K. Beyreuther, H. Zheng, R. E. Tanzi, C. L. Masters and A. I. Bush, Treatment with a copper-zinc chelator markedly and rapidly inhibits [beta]-amyloid accumulation in Alzheimer's disease transgenic mice, Neuron 30 (2001) 665-676; DOI: 10.1016/S0896-6273(01)00317-8.CrossrefPubMedGoogle Scholar

  • H. Zheng, M. B. H. Youdim, L. M. Weiner and M. Fridkin, Synthesis and evaluation of peptidic metal chelators for neuroprotection in neurodegenerative diseases, J. Pept. Res. 66 (2005) 190-203; DOI: 10.1111/j.1399-3011.2005.00289.x.CrossrefGoogle Scholar

  • C. Deraeve, M. Pitie, H. Mazarguil and B. Meunier, Bis-8-hydroxyquinoline ligands as potential anti-Alzheimer agents, New J. Chem. 31 (2007) 193-195; DOI: 10.1039/b616085a.CrossrefGoogle Scholar

  • C. W. Ritchie, A. I. Bush, A. Mackinnon, S. Macfarlane, M. Mastwyk, L. MacGregor, L. Kiers, R. Cherny, Q.-X. Li, A. Tammer, D. Carrington, C. Mavros, I. Volitakis, M. Xilinas, D. Ames, S. Davis, K. Beyreuther, R. E. Tanzi and C. L. Masters, Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Aβ amyloid deposition and toxicity in Alzheimer disease: A pilot phase 2 clinical trial, Arch. Neurol. 60 (2003) 1685-1691; DOI: 10.1001/archneur.60.12.1685.CrossrefPubMedGoogle Scholar

  • A. I. Bush, Metal complexing agents as therapies for Alzheimer's disease, Neurobiol. Aging 23 (2002) 1031-1038. DOI: 10.1016/S0197-4580(02)00120-3.CrossrefGoogle Scholar

  • J. Tateishi, Subacute myelo-optico-neuropathy: Clioquinol intoxication in humans and animals, Neuropathology 20 (Suppl.) S20-S24; DOI: 10.1046/j.1440-1789.2000.00296.x.CrossrefPubMedGoogle Scholar

  • M. S. Yassin, J. Ekblom, M. Xilinas, C. G. Gottfries and L. Oreland, Changes in uptake of vitamin B-12 and trace metals in brains of mice treated with clioquinol, J. Neurol. Sci 173 (2000) 40-44; DOI: 10.1016/S0022-510X(99)00297-X.CrossrefGoogle Scholar

  • M. Di Vaira, C. Bazzicalupi, P. Orioli, L. Messori, B. Bruni and P. Zatta, Clioquinol, a drug for Alzheimer's disease specifically interfering with brain metal metabolism: Structural characterization of its zinc(II) and copper(II) complexes, Inorg. Chem. 43 (2004) 3795-3797; DOI: 10.1021/ic0494051.CrossrefGoogle Scholar

  • C. C. Wagner, S. Calvo, M. H. Torre and E. J. Baran, Vibrational spectra of clioquinol and its Cu(II) complex, J. Raman Spectrosc. 38 (2007) 373-376; DOI: 10.1002/jrs.1654.CrossrefGoogle Scholar

  • A. Budimir, N. Humbert, M. Elhabiri, I. Osinska, M. Birus and A.-M. Albrecht-Gary, Hydroxyquinoline based binders: Promising ligands for chelatotherapy?, J. Inorg. Biochem, in press; DOI: 10.1016/j.jinorgbio.2010.08.014.CrossrefGoogle Scholar

  • R. A. Cherny, J. T. Legg, C. A. McLean, D. P. Fairlie, X. Huang, C. S. Atwood, K. Beyreuther, R. E. Tanzi, C. L. Masters and A. I. Bush, Aqueous dissolution of Alzheimer's disease Aβ amyloid deposits by biometal depletion, J. Biol. Chem. 274 (1999) 23223-23228; DOI: 10.1074/jbc.274.33.23223.CrossrefGoogle Scholar

  • C. Grossi, S. Francese, A. Casini, M. C. Rosi, I. Luccarini, A. Fiorentini, C. Gabbiani, L. Messori, G. Moneti and F. Casamenti, Clioquinol decreases amyloid-β burden and reduces working memory impairment in a transgenic mouse model of Alzheimer's disease, J. Alzheimer's Dis. 17 (2009) 423-440.Google Scholar

  • L. Lannfelt, K. Blennow, H. Zetterberg, S. Batsman, D. Ames, J. Harrison, C. L. Masters, S. Targum, A. I. Bush, R. Murdoch, J. Wilson and C. W. Ritchie, Safety, efficacy, and biomarker findings of PBT2 in targeting Aβ as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised, placebo-controlled trial, Lancet Neurol. 7 (2008) 779-786; DOI: 10.1016/S1474-4422(08)70167-4.CrossrefGoogle Scholar

  • P. A. Adlard, R. A. Cherny, D. I. Finkelstein, E. Gautier, E. Robb, M. Cortes, I. Volitakis, X. Liu, J. P. Smith, K. Perez, K. Laughton, Q.-X. Li, S. A. Charman, J. A. Nicolazzo, S. Wilkins, K. Deleva, T. Lynch, G. Kok, C. W. Ritchie, R. E. Tanzi, R. Cappai, C. L. Masters, K. J. Barnham and A. I. Bush, Rapid restoration of cognition in Alzheimer's transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Aβ, Neuron 59 (2008) 43-55; DOI: 10.1016/j.neuron.2008.06.018.CrossrefGoogle Scholar

About the article


Published Online: 2011-03-15

Published in Print: 2011-03-01


Citation Information: Acta Pharmaceutica, ISSN (Online) 1846-9558, ISSN (Print) 1330-0075, DOI: https://doi.org/10.2478/v10007-011-0006-6.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Duraippandi Palanimuthu, Rachal Poon, Sumit Sahni, Rukhsana Anjum, David Hibbs, Hsuan-Yu Lin, Paul V. Bernhardt, Danuta S. Kalinowski, and Des R. Richardson
European Journal of Medicinal Chemistry, 2017
[2]
Aleksandra Kotynia, József Sándor Pap, and Justyna Brasun
Inorganica Chimica Acta, 2017
[3]
Alex J. McDonald, Jessie P. Dibble, Eric G. B. Evans, and Glenn L. Millhauser
Journal of Biological Chemistry, 2014, Volume 289, Number 2, Page 803
[4]
Syed H. Omar, Christopher J. Scott, Adam S. Hamlin, and Hassan K. Obied
The Journal of Nutritional Biochemistry, 2017, Volume 47, Page 1
[5]
Wen-Yu Wu, Yu-Chen Dai, Nian-Guang Li, Ze-Xi Dong, Ting Gu, Zhi-Hao Shi, Xin Xue, Yu-Ping Tang, and Jin-Ao Duan
Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, Volume 32, Number 1, Page 572
[6]
Hye Young Kim, Jung A. Kwon, Taewook Kang, and Inhee Choi
Nanomedicine: Nanotechnology, Biology and Medicine, 2017, Volume 13, Number 4, Page 1575
[7]
Mauro B. França, Karina C. Lima, and Elis C.A. Eleutherio
Journal of Cellular Biochemistry, 2017, Volume 118, Number 6, Page 1442
[8]
Sadegh Kaviani, Mohammad Izadyar, and Mohammad Reza Housaindokht
Computational Biology and Chemistry, 2017, Volume 67, Page 114
[9]
Cecilia Wallin, Jinghui Luo, Jüri Jarvet, Sebastian K. T. S. Wärmländer, and Astrid Gräslund
Israel Journal of Chemistry, 2017, Volume 57, Number 7-8, Page 674
[10]
Jutamas Jiaranaikulwanitch, Sarin Tadtong, Piyarat Govitrapong, Valery V. Fokin, and Opa Vajragupta
Bioorganic & Medicinal Chemistry, 2017, Volume 25, Number 3, Page 1195
[11]
Juan Frau, Francisco Muñoz, and Daniel Glossman-Mitnik
Molecules, 2016, Volume 21, Number 12, Page 1650
[12]
Jinli Zhu, Yuhuan Zhang, Yihan Chen, Tongming Sun, Yanfeng Tang, Yang Huang, Qingqing Yang, Danyang Ma, Yipu Wang, and Miao Wang
Tetrahedron Letters, 2017, Volume 58, Number 4, Page 365
[13]
Andrew M. Prentice, Yery A. Mendoza, Dora Pereira, Carla Cerami, Rita Wegmuller, Anne Constable, and Jörg Spieldenner
Nutrition Reviews, 2017, Volume 75, Number 1, Page 49
[14]
Chandra Sekhar Kuruva and P. Hemachandra Reddy
Drug Discovery Today, 2017, Volume 22, Number 2, Page 223
[16]
Yingbo Fu, Yu Mu, Hui Lei, Pu Wang, Xin Li, Qiao Leng, Li Han, Xiaodan Qu, Zhanyou Wang, and Xueshi Huang
Molecules, 2016, Volume 21, Number 10, Page 1338
[17]
Amandine Conte-Daban, Adam Day, Peter Faller, and Christelle Hureau
Dalton Trans., 2016, Volume 45, Number 39, Page 15671
[18]
Diana Yugay, Dominic P. Goronzy, Lisa M. Kawakami, Shelley A. Claridge, Tze-Bin Song, Zhongbo Yan, Ya-Hong Xie, Jérôme Gilles, Yang Yang, and Paul S. Weiss
Nano Letters, 2016, Volume 16, Number 10, Page 6282
[19]
Antonia Duarte, Irwin de Menezes, Maria Bezerra Morais Braga, Nadghia Leite, Luiz Barros, Emily Waczuk, Maria Pessoa da Silva, Aline Boligon, João Teixeira Rocha, Diogo Souza, Jean Kamdem, Henrique Melo Coutinho, and Marilise Escobar Burger
Molecules, 2016, Volume 21, Number 12, Page 743
[20]
Chin-Lan Fu, Li-Shin Hsu, Yung-Feng Liao, and Ming-Kuan Hu
Archiv der Pharmazie, 2016, Volume 349, Number 5, Page 327
[21]
Veronika F.S. Pape, Szilárd Tóth, András Füredi, Kornélia Szebényi, Anna Lovrics, Pál Szabó, Michael Wiese, and Gergely Szakács
European Journal of Medicinal Chemistry, 2016, Volume 117, Page 335
[22]
Federica Prati, Christian Bergamini, Romana Fato, Ondrej Soukup, Jan Korabecny, Vincenza Andrisano, Manuela Bartolini, and Maria Laura Bolognesi
ChemMedChem, 2016, Volume 11, Number 12, Page 1284
[23]
Mariana Costa Duarte, Letícia Martins dos Reis Lage, Daniela Pagliara Lage, Juliana Tonini Mesquita, Beatriz Cristina Silveira Salles, Stefânia Neiva Lavorato, Daniel Menezes-Souza, Bruno Mendes Roatt, Ricardo José Alves, Carlos Alberto Pereira Tavares, André Gustavo Tempone, and Eduardo Antonio Ferraz Coelho
Veterinary Parasitology, 2016, Volume 217, Page 81
[24]
R.A. Hauser-Davis, J.A.N. Silva, Rafael C.C. Rocha, Tatiana Saint’Pierre, R.L. Ziolli, and M.A.Z. Arruda
Journal of Trace Elements in Medicine and Biology, 2016, Volume 33, Page 68
[25]
Kristin Part, Kai Künnis-Beres, Helen Poska, Tiit Land, Ruth Shimmo, and Sandra Zetterström Fernaeus
Brain Research, 2015, Volume 1629, Page 282
[26]
K. Rajasekhar, Malabika Chakrabarti, and T. Govindaraju
Chem. Commun., 2015, Volume 51, Number 70, Page 13434
[27]
Wenming Ren, Mingming Xu, Steven H. Liang, Huaijiang Xiang, Li Tang, Minkui Zhang, Dejun Ding, Xin Li, Haiyan Zhang, and Youhong Hu
Biosensors and Bioelectronics, 2016, Volume 75, Page 136
[28]
Anupam Ghorai, Jahangir Mondal, Rukmani Chandra, and Goutam K. Patra
Dalton Trans., 2015, Volume 44, Number 29, Page 13261
[29]
Melita Salkovic-Petrisic, Ana Knezovic, Jelena Osmanovic-Barilar, Una Smailovic, Vladimir Trkulja, Peter Riederer, Tamar Amit, Silvia Mandel, and Moussa B.H. Youdim
Life Sciences, 2015, Volume 136, Page 108
[30]
R. A. Hauser-Davis, L. V. de Freitas, D. S. Cukierman, W. S. Cruz, M. C. Miotto, J. Landeira-Fernandez, A. A. Valiente-Gabioud, C. O. Fernández, and N. A. Rey
Metallomics, 2015, Volume 7, Number 5, Page 743
[31]
Christian Dienemann, Ina Coburger, Arnela Mehmedbasic, Olav M. Andersen, and Manuel E. Than
Biochemistry, 2015, Volume 54, Number 15, Page 2490
[32]
Rohit Mehra, Rupinder K. Sodhi, and Neha Aggarwal
Pharmaceutical Biology, 2015, Volume 53, Number 9, Page 1250
[33]
Anna M. Michałowska-Kaczmarczyk and Tadeusz Michałowski
Journal of Analytical Sciences, Methods and Instrumentation, 2014, Volume 04, Number 03, Page 71
[34]
Jutika Kumar, Manas Jyoti Sarma, Prodeep Phukan, and Diganta Kumar Das
Dalton Trans., 2015, Volume 44, Number 10, Page 4576
[36]
Veronika F.S. Pape, Dóra Türk, Pál Szabó, Michael Wiese, Eva A. Enyedy, and Gergely Szakács
Journal of Inorganic Biochemistry, 2015, Volume 144, Page 18
[37]
Kadir Ozden Yerdelen, Mehmet Koca, Zeynep Kasap, and Baris Anil
Journal of Enzyme Inhibition and Medicinal Chemistry, 2015, Volume 30, Number 4, Page 671
[38]
Wenhai Huang, Wenhua Wei, and Zhengrong Shen
RSC Adv., 2014, Volume 4, Number 94, Page 52088
[39]
Yunpeng Huang, Zhihao Wu, Yu Cao, Minglin Lang, Bingwei Lu, and Bing Zhou
Cell Reports, 2014, Volume 8, Number 3, Page 831
[40]
Luiza M.F. Gomes, Rafael P. Vieira, Michael R. Jones, Michael C.P. Wang, Christine Dyrager, Elaine M. Souza-Fagundes, Jeferson G. Da Silva, Tim Storr, and Heloisa Beraldo
Journal of Inorganic Biochemistry, 2014, Volume 139, Page 106
[41]
[42]
Ivo F. Scheiber, Julian F.B. Mercer, and Ralf Dringen
Progress in Neurobiology, 2014, Volume 116, Page 33
[43]
Leonardo Viana de Freitas, Cecilia C.P. da Silva, Javier Ellena, Luiz Antônio Sodré Costa, and Nicolás A. Rey
Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013, Volume 116, Page 41
[44]
Nicolas P. E. Barry and Peter J. Sadler
Chemical Communications, 2013, Volume 49, Number 45, Page 5106
[45]
Waldemar Robak, Wiesław Apostoluk, Paweł Maciejewski, Julia Agnieszka Pielka, and Joanna Natalia Kwiotek
Journal of Chemical & Engineering Data, 2013, Volume 58, Number 6, Page 1470
[46]
Zhiyin Zhang, Shuaishuai Sun, Jianhua Xu, Jing Zhang, Yan Huang, Bingbing Zhang, and Ye Tao
Journal of Physics: Conference Series, 2013, Volume 430, Page 012041
[47]
Charles M. Keyari, Alison K. Kearns, Nathan S. Duncan, Emily A. Eickholt, Geoffrey Abbott, Howard D. Beall, and Philippe Diaz
Journal of Medicinal Chemistry, 2013, Volume 56, Number 10, Page 3806
[48]
Biao Cheng, Hao Gong, Xiaochao Li, Yue Sun, Hong Chen, Xin Zhang, Qian Wu, Ling Zheng, and Kun Huang
Proteins: Structure, Function, and Bioinformatics, 2013, Volume 81, Number 4, Page 613
[49]
Jie-Hua Chen, Shahreena Shahnavas, Nadia Singh, Wei-Yi Ong, and Thomas Walczyk
Metallomics, 2013, Volume 5, Number 2, Page 167
[50]
Renato X. Santos, Sónia C. Correia, Xiongwei Zhu, Mark A. Smith, Paula I. Moreira, Rudy J. Castellani, Akihiko Nunomura, and George Perry
Antioxidants & Redox Signaling, 2013, Volume 18, Number 18, Page 2444
[51]
Michelle L. Block, Alison Elder, Richard L. Auten, Staci D. Bilbo, Honglei Chen, Jiu-Chiuan Chen, Deborah A. Cory-Slechta, Daniel Costa, David Diaz-Sanchez, David C. Dorman, Diane R. Gold, Kimberly Gray, Hueiwang Anna Jeng, Joel D. Kaufman, Michael T. Kleinman, Annette Kirshner, Cindy Lawler, David S. Miller, Srikanth S. Nadadur, Beate Ritz, Erin O. Semmens, Leonardo H. Tonelli, Bellina Veronesi, Robert O. Wright, and Rosalind J. Wright
NeuroToxicology, 2012, Volume 33, Number 5, Page 972
[52]
Kasper P. Kepp
Chemical Reviews, 2012, Volume 112, Number 10, Page 5193
[53]
Efrat Korin, Beny Cohen, Yue-Xia Bai, Cheng-Chu Zeng, and James Y. Becker
Tetrahedron, 2012, Volume 68, Number 36, Page 7450
[54]
Henryk Kozlowski, Marek Luczkowski, Maurizio Remelli, and Daniela Valensin
Coordination Chemistry Reviews, 2012, Volume 256, Number 19-20, Page 2129
[55]
Renato X. Santos, Sónia C. Correia, Xiongwei Zhu, Hyoung-Gon Lee, Robert B. Petersen, Akihiko Nunomura, Mark A. Smith, George Perry, and Paula I. Moreira
Free Radical Research, 2012, Volume 46, Number 4, Page 565

Comments (0)

Please log in or register to comment.
Log in