Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year

IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
See all formats and pricing
More options …
Volume 61, Issue 2


The technologies used for developing orally disintegrating tablets: A review

Bhatu Badgujar / Atish Mundada
Published Online: 2011-06-17 | DOI: https://doi.org/10.2478/v10007-011-0020-8

The technologies used for developing orally disintegrating tablets: A review

Orally disintegrating tablets (ODTs), also known as fast melts, quick melts, fast disintegrating and orodispersible systems, have the unique property of disintegrating in the mouth in seconds without chewing and the need of water and are thus assumed to improve patient compliance. Conventional methods like direct compression, wet granulation, moulding, spray-drying, freeze-drying and sublimation were used to prepare ODTs. New advanced technologies like Orasolv®, Durasolv®, Wowtab®, Flashtab®, Zydis®, Flashdose®, Oraquick®, Lyoc®, Advatab®, Frosta®, Quick-Disc® and Nanomelt® have been introduced by some pharmaceutical companies for the production of ODTs. The main objective of this review is to give a comprehensive insight into conventional and recent technologies used for the preparation of ODTs.

Pregled tehnologija priprave oralno raspadljivih tableta

Oralno raspadljive tablete (ODT), poznate i kao lako topljive tablete, brzo raspadljive i kao orodisperzibilni sustavi, imaju jedinstveno svojstvo trenutnog raspadanja u ustima, bez žvakanja i bez potrebe uzimanja vode, što poboljšava pacijentovu suradljivost. U pripravi ODT koriste se uobičajene metode kao što su izravna kompresija, vlažna granulacija, kalupljenje, sušenje sprejanjem, sušenje smrzavanjem i sublimacija, a u njihovoj proizvodnji napredne tehnologije kao što su Orasolv®, Durasolv®, Wowtab®, Flashtab®, Zydis®, Flashdose®, Oraquick®, Lyoc®, Advatab®, Frosta®, Quick-Disc® i Nanomelt®. Cilj ovog rada je dati uvid u uobičajene i novije tehnologije u pripravi ODT.

Keywords: orally disintegrating tablet; orodispersible tablet; superdisintegrant; drug delivery; fast disintegrating tablet

Keywords: oralno raspadljive tablete; orodisperzibilne tablete; superdezintegratori; isporuka lijekova; brzo raspadljive tablete

  • European Pharmacopoeia, 5th ed., Council of Europe, Strasbourg, 2006, p. 628.Google Scholar

  • S. Bandari, R. K. Mittapalli and Y. M. Gannu Rao, Orodispersible tablet: An overview, Asian J. Pharm. 2 (2008) 2-11. DOI: 10.4103/0973-8398.41557.CrossrefGoogle Scholar

  • V. Agarwal, B. H. Kothari, D. V. Moe and R. K. Khankari, Drug delivery: Fast-dissolve Systems, in Encyclopedia of Pharmaceutical Technology (Ed. James Swarbrick), Informa Healthcare, New York 2006, pp. 1104-1114.Google Scholar

  • S. V. Sastry, J. R. Nyshadham and J. A. Fix, Recent technological advances in oral drug delivery - a review, Pharm. Sci. Tech. Today 3 (2000) 138-145. DOI: 10.1016/S1461-5347(00)00247-9.CrossrefGoogle Scholar

  • P. Virely and R. Yarwood, Zydis - a novel fast dissolving dosage form, Manuf. Chem. 61 (1990) 36-37.Google Scholar

  • S. W. Avery and D. M. Dellarosa, Approaches to treating dysphagia in patients with brain injury, Am. J. Occup. Ther. 48 (1994) 235-239.CrossrefGoogle Scholar

  • P. J. Kahrilas, Anatomy, physiology and pathophysiology of dysphagia, Acta Otorhinolaryngol. Belg. 48 (1994) 97-117.PubMedGoogle Scholar

  • C. G. Wilson, N. Washington, J. Peach, G. R. Murray and J. Kennerley, The behavior of a fast dissolving dosage form (Expidet) followed by γ-scintigraphy, Int. J. Pharm. 40 (1987) 119-123; DOI: 10.1016/0378-5173(87)90056-1.CrossrefGoogle Scholar

  • R. Chandrasekhar, Z. Hassan, F. Alhusban, A. M. Smith and A. R. Mohammed, The role of formulation excipients in the development of lyophilized fast-disintegrating tablets, Eur. J. Pharm. Biopharm. 72 (2009) 119-129; DOI: 10.1016/j.ejpb.2008.11.011.CrossrefGoogle Scholar

  • I. S. Ahmed, M. M. Nafadi and F. A. Fatahalla, Formulation of fast-dissolving ketoprofen tablet using freeze-drying in blisters technique, Drug Dev. Ind. Pharm. 32 (2006) 437-442; DOI: 10.1080/03639040500528913.PubMedCrossrefGoogle Scholar

  • S. Kundu and P. K. Sahoo, Recent trends in the developments of orally disintegrating tablet technology, Pharma Times 40 (2008) 11-15.Google Scholar

  • A. S. Mundada, S. Jain, N. O. Chachda and J. G. Avari, Taste masking approaches - a review: Part I, Am. Pharm. Rev. 11 (2008) 94-102.Google Scholar

  • A. S. Mundada, S. Jain, N. O. Chachda and J. G. Avari, Taste masking approaches - a review: Part II, Am. Pharm. Rev. 11 (2008) 74-82.Google Scholar

  • P. Busson and M. Schroeder, Process for Preparing a Pharmaceutical Composition, U.S. Pat. 6,534,087, 18 Mar 2003.Google Scholar

  • A. Fini, V. Bergamante, G. C. Ceschel, C. Ronchi and C. A. Fonseca de Moraes, Fast dispersible/slow releasing ibuprofen tablets, Eur. J. Pharm. Biopharm. 69 (2008) 335-341; DOI: 10.1016/j.ejpb.2007.11.011.CrossrefGoogle Scholar

  • K. G. Mohamed and C. A. Moji, High shear mixing granulation of ibuprofen and β-cyclodextrin: effects of process variables on ibuprofen dissolution, AAPS Pharm. SciTech. 8 (2007) 84; DOI: 10.1208/pt0804084.CrossrefGoogle Scholar

  • K. Masters, Spray Drying Fundamentals: Process stages and Layouts, in Spray Drying Handbook, 5th ed., Longman Scientific & Technical, New York 1991, pp. 23-64.Google Scholar

  • J. Xu, L. L. Bovet and K. Zhao, Taste masking microspheres for orally disintegrating tablets, Int. J. Pharm. 359 (2008) 63-69; DOI: 10.1016/j.ijpharm.2008.03. 019.CrossrefGoogle Scholar

  • L. Hughes, Selecting the right ion exchange resin, Pharma Quality 1 (2005) 54-56.Google Scholar

  • N. Prasad, D. Straus and G. Reichart, Cyclodextrin Favor Delivery Systems, U.S. Pat. 6,287,603, 11 Sep 2001.Google Scholar

  • S. H. Jeong and K. Park, Development of sustained release fast-disintegrating tablets using various polymer-coated ion-exchange resin complexes, Int. J. Pharm. 353 (2008) 195-204; DOI: 10.1016/j.ijpharm.2007.11.033.CrossrefGoogle Scholar

  • D. P. Venkatesh and C. G. Geetha Rao, Formulation of taste masked orodispersible tablets of ambroxol hydrochloride, Asian J. Pharm. 2 (2008) 261-264; DOI: 10.4103/0973-8398.45043.CrossrefGoogle Scholar

  • J. A. Bakan, Microencapsulation, in The Theory and Practice of Industrial Pharmacy (Eds. H. A. Lieberman, L. Lanchman and J. L. Kanig), Varghese Publishing House, Bombay 1987, p. 420.Google Scholar

  • A. Y. Ozer and A. A. Hincal, Studies on the masking of unpleasant taste of beclamide: micro-encapsulation and tableting, J. Microencapsul. 7 (1990) 327-339.CrossrefGoogle Scholar

  • R. O'Connor and J. Schwartz, Extrusion and Spheronization Technology, in Pharmaceutical Pelletization Technology, Vol. 37, Marcel Dekker Inc., New York 1989, pp. 116-120.Google Scholar

  • P. S. Zade, P. S. Kawtikwar and D. M. Sakharkar, Formulation, evaluation and optimization of fast dissolving tablet containing tizanidine hydrochloride, Int. J. Pharm. Tech. Res. 1 (2009) 34-42.Google Scholar

  • T. Yajima, N. Umeki and S. Itai, Optimum spray congealing condition for masking the bitter taste of clarithromycin in wax matrix, Chem. Pharm. Bull. 47 (1999) 220-225.CrossrefGoogle Scholar

  • S. L. Nail, L. A. Gatlin, Freeze Drying: Principles and Practice, in Pharmaceutical Dosage Forms - Parenteral Medications, Marcel Dekker, New York 1993, p. 163.Google Scholar

  • P. Kearney and S. K. Wong, Method of Making Freeze Dried Drug Dosage Forms, U.S. Pat. 5 631 023, 20 May 1997.Google Scholar

  • P. Kearney, The Zydis Oral Fast Dissolving Dosage Form, in Modified-release Drug Delivery Technology (Eds. M. J. Rathbone, J. Hadgraft and M. S. Roberts), Marcel Dekker Inc., New York 2003, pp. 191-201.Google Scholar

  • H. Seager, Drug delivery product and the Zydis fast-dissolving dosage form, J. Pharm. Pharmacol. 50 (1998) 375-382; DOI: 10.1111/j.2042-7158.CrossrefGoogle Scholar

  • L. Dobetti, Fast-melting tablets: Developments and technologies, Pharma Tech. Drug Deliv. 37 (2001) 44-50.Google Scholar

  • S. Corveleyn and J. P. Remon, Formulation and production of rapidly disintegrating tablets by lyophilization using hydrochlorothiazide as a model drug, Int. J. Pharm. 152 (1997) 215-225; DOI: 10.1016/S0378-5173(97)00092-6.CrossrefGoogle Scholar

  • D. Kaushik, S. Dureja and T. R. Saini, An overview of melt in mouth tablet technologies and techniques, J. Pharm. Res. 3 (2004) 35-37.Google Scholar

  • R. G. Blank, D. S. Mody, R. J. Kenny and M. C. Aveson, Fast Dissolving Dosage Forms, U.S. Pat. 4946684, 9 May 1990.Google Scholar

  • K. Masaki, Intrabuccally Disintegrating Preparation and Production Thereof, U.S. Pat. 5,466,464, 14 Nov 1995.Google Scholar

  • A. Modi and P. Tayade, Enhancement of dissolution profile by solid dispersion (kneading) technique, AAPS PharmSciTech. 7 (2006) Article 68; DOI: 10.1208/pt070368.CrossrefPubMedGoogle Scholar

  • R. Laitinen, E. Suihko, K. Toukola, M. Bjorkqvist, J. Riikonen, V. P. Lehto, K. Jarvinen and J. Ketolainen, Intraorally fast-dissolving particles of a poorly soluble drug: Preparation and in vitro characterization, Eur. J. Pharm. Biopharm. 71 (2009) 271-281; DOI: 10.1016/j.ejpb.2008.09.001.CrossrefGoogle Scholar

  • T. M. Harmon, Orally disintegrating tablets: A valuable life cycle management strategy, Issue Pharm. Comm. (2007) 1-4.Google Scholar

  • T. E. Chiver and O. Minn, Process for Making Candy Floss, U.S. Pat. 7,30,057, 13 Feb 2003.Google Scholar

  • G. L. Mayers, G. E. Battisk and R. C. Fluiz, Process and Apparatus for Making Rapidly Dissolving Dosage Uunits and Product Thereform, PCT Pat. WC 95/24293-A1, 1995.Google Scholar

  • T. Mizumoto, Y. Masuda, T. Yamamoto, E. Yonemochi and K. Terada, Formulation design of a novel fast-disintegrating tablet, Int. J. Pharm. 306 (2005) 83-90; DOI: 10.1016/j.ijpharm.2005.09.009.CrossrefGoogle Scholar

  • M. Sugimoto, S. Narisawa, K. Matsubara, H. Yoshino, M. Nakano and T. Handa, Development of manufacturing method for rapidly disintegrating oral tablets using the crystalline transition of amorphous sucrose, Int. J. Pharm. 320 (2006) 71-78; DOI: 10.1016/j.ijpharm.2006.04.004.CrossrefGoogle Scholar

  • M. Sugimoto, S. Narisawa, K. Matsubara, H. Yoshino, M. Nakano and T. Handa, Effect of formulated ingredients on rapidly disintegrating oral tablets prepared by the crystalline transition method, Chem. Pharm. Bull. 54 (2006) 175-180.PubMedCrossrefGoogle Scholar

  • G. Abdelbary, P. Prinderre, C. Eouani, J. Joachim, J. P. Reynier and P. H. Piccerelle, The preparation of orally disintegrating tablets using a hydrophilic waxy binder, Int. J. Pharm. 278 (2004) 423-433; DOI: 10.1016/j.ijpharm.2004.03.023.CrossrefGoogle Scholar

  • G. Abdelbary, C. Eouani, P. Prinderre, J. Joachim, J. P. Reynier and P. H. Piccerelle, Determination of the in vitro disintegration profile of rapidly disintegrating tablets and correlation with oral disintegration, Int. J. Pharm. 292 (2005) 29-41; DOI: 10.1016/j.ijpharm.2004.08.019. 26.CrossrefGoogle Scholar

  • B. Perissutti, F. Rubessa, M. Moneghini and D. Voinovich, Formulation design of carbamazepine fast-release tablets prepared by melt granulation technique, Int. J. Pharm. 256 (2003) 53-63; DOI: 10.1016/0378-5173(89)90061-6.CrossrefGoogle Scholar

  • Y. Kuno, M. Kojima, S. Ando and H. Nakagami, Effect of preparation method on properties of orally disintegrating tablets made by phase transition, Int. J. Pharm. 355 (2008) 87-92; DOI: 10.1016/j.ijpharm.2007.11.046.CrossrefGoogle Scholar

  • Y. Kuno, M. Kojima, H. Nakagami, E. Yonemochi and K. Terada, Effect of the type of lubricant on the characteristics of orally disintegrating tablets manufactured using the phase transition of sugar alcohol, Eur. J. Pharm. Biopharm. 69 (2008) 986-992; DOI: 10.1016/j.ejpb.2008.02.016.CrossrefGoogle Scholar

  • D. M. Patel and M. M. Patel, Optimization of fast dissolving etoricoxib tablet by sublimation technique, Indian J. Pharm. Sci. 70 (2008) 71-76; DOI: 10.4103/0250-474X.40335.CrossrefGoogle Scholar

  • S. Suresh, V. Pandit and P. Joshi, Preparation and evaluation of mouth dissolving tablet of salbutamol sulphate, Indian J. Pharm. Sci. 69 (2007) 467-469; DOI: 10.4103/0250-474X.34568.CrossrefGoogle Scholar

  • B. J. Roser and J. Blair, Rapidly Soluble Oral Solid Dosage Forms, Methods of Making Same, and Compositions Thereof, U.S. Pat. 5,762,961, 9 June 1998.Google Scholar

  • Y. Yamamoto, M. Fujii, K. Watanabe, M. Tsukamoto, Y. Shibata, M. Kondoh and Y. Watanabe, Effect of powder characteristics on oral tablet disintegration, Int. J. Pharm. 365 (2009) 116-120; DOI: 10.1016/j.ijpharm. 2008.08.031.CrossrefGoogle Scholar

  • M. El-Barghouthi, A. Eftaiha, I. Rashid, M. Ai. Remarps and A. Badwan, A novel superdisintegrating agent made from physically modified chitosan with silicon dioxide, Drug Dev. Ind. Pharm. 34 (2008) 373-383; DOI: 10.1080/03639040701657792.PubMedCrossrefGoogle Scholar

  • Y. Bi, H. Sunada, Y. Yonezawa, K. Danjo, A. Otsuka and K. Iida, Preparation and evaluation of a compressed tablet rapidly disintegrating in the oral cavity, Chem. Pharm. Bull. 44 (1996) 2121-2127.CrossrefPubMedGoogle Scholar

  • A. Ito and M. Sugihara, Development of oral dosage form for elderly patients: Use of agar as base of rapidly disintegrating oral tablets, Chem. Pharm. Bull. 44 (1996) 2132-2136.CrossrefPubMedGoogle Scholar

  • S. G. Gattani, B. G. Shiyani, K. N. Kakade, A. B. Patil and S. J. Surana, Formulation and development of mouth dissolving tablet of ondensetron hydrochloride by using superdisintegrants, Indian Drugs 46 (2009) 44-50.Google Scholar

  • J. Fukami, A. Ozawa, Y. Yoshihashi, E. Yonemochi and K. Terada. Development of fast disintegrating compressed tablets using amino acid as disintegration accelerator: evaluation of wetting and disintegration of tablet on the basis of surface free energy, Chem. Pharm. Bull. 53 (2005) 1536-1539.PubMedCrossrefGoogle Scholar

  • T. Koseki, H. Onishin, Y. Takahashi, M. Uchida and Y. Machida, Development of novel fast-disintegrating tablets by direct compression using sucrose stearic acid ester as a disintegration-accelerating agent, Chem. Pharm. Bull. 56 (2008) 1384-1388.PubMedCrossrefGoogle Scholar

  • T. Shu, H. Suzuki, K. Hironaka and K. Ito, Studies of rapidly disintegrating tablets in the oral cavity using co-ground mixtures of mannitol with crospovidone, Chem. Pharm. Bull. 50 (2002) 193-198.PubMedCrossrefGoogle Scholar

  • S. G. Late, Y. Yu and A. K. Banga, Effects of disintegration-promoting agent, lubricants and moisture treatment on optimized fast disintegrating tablets, Int. J. Pharm. 365 (2009) 4-11; DOI: 10.1016/j.ijpharm. 2008.08.010.CrossrefGoogle Scholar

  • N. Zhao and L. L. Augsburger, The influence of granulation on superdisintegrant performance, Pharm. Dev. Technol. 11 (2006) 47-53.CrossrefGoogle Scholar

  • P. Di Martino, S. Martelli and P. Wehrle, Evaluation of different fast melting disintegrants by means of a central composite design, Drug Dev. Ind. Pharm. 31 (2005) 109-121; DOI: 10.1081/DDC-44233.PubMedCrossrefGoogle Scholar

  • A. A. Joshi and D. Xavier, Added functionally excipients: An answer to challenging formulations, Pharm. Tech. 2004, 12-19.Google Scholar

  • N. Zhao and L. L. Augsburger, The influence of product brand-to-brand variability on superdisintegrant performance. A case study with croscarmellose sodium, Pharm. Dev. Technol. 11 (2006) 179-185.PubMedCrossrefGoogle Scholar

  • Y. Fu, S. H. Jeong and K. Park, Fast-melting tablets based on highly plastic granules, J. Control. Release 109 (2005) 203-210; DOI: 10.1016/j.jconrel.2005.09.021.CrossrefGoogle Scholar

  • J. Shery, A. Shirwaikar and A. Nair, Preparation and evaluation of fast-disintegrating effervescent tablets of glibenclamide, Drug Dev. Ind. Pharm. 35 (2009) 321-328; DOI: 10.1080/03639040802337021.CrossrefGoogle Scholar

  • G. S. Bankar and N. R. Anderson, Tablets, in The Theory and Practice of Industrial Pharmacy (Eds. L. Lanchman, H. A. Lieberman and J. L. Kanig), Varghese Publishing House, Bombay 1987, pp. 293-345.Google Scholar

  • F. Wehling, S. Schuehle and N. Madamala, Effervescent Dosage Form with Microparticles, U.S. Pat. 5,178,878, 12 Jan 1993.Google Scholar

  • F. Wehling, S. Schuehle and N. Madamala, Pediatric Effervescent Dosage Form, U.S. Pat. 5,223,264, 29 Jun 1993.Google Scholar

  • F. Wehling and S. Schuehle, Base Coated Acid Particles and Effervescent Formulation Incorporating same, U.S. Pat. 5,503,846, 2 Apr 1996.Google Scholar

  • M. C. Iles, A. D. Atherton and N. M. Copping, Freeze-dried Dosage Forms and Methods for Preparing the Same, U.S. Pat. 5,188,825, 23 Feb 1993.Google Scholar

  • S. R. Cherukuri, G. L. Myers, G. E. Battist and R. C. Fuisz, Process for Forming Quickly Dispersing Comestible Unit and Product Therefrom, U.S. Pat. 5,587,172, 24 Dec 1996.Google Scholar

  • R. C. Fuisz, Ulcer Prevention Method Using a Melt-spun Hydrogel, U.S. Pat. 5,622,717, 22 Apr 1997.Google Scholar

  • S. R. Cherukuri and R. Fuisz, Process and Apparatus for Making Tablets and Tablets Made Therefrom, Eur. Pat. 0677,147 A2, 1995.Google Scholar

  • G. L. Myers, G. E. Battist and R. C. Fuisz, Delivery of Controlled-release Systems, U.S. Pat. 5,567, 439, 22 Oct 1996.Google Scholar

  • G. L. Myers, G. E. Battist and R. C. Fuisz, Apparatus for Making Rapidly Dissolving Dosage Units, U.S. Pat. 5,871,781, 16 Feb 1999.Google Scholar

  • S. R. Cherukuri and R. Fuisz, Process and Apparatus for Making Tablets and Tablets Made Therefrom, U.S. Pat. 5,654,003, 5 Aug 1997.Google Scholar

  • G. L. Myers, G. E. Battist and R. C. Fuisz, Process and Apparatus for Making Rapidly Dissolving Dosage Units and Product Therefrom, U.S. Pat. 5,622,719, 22 April 1997.Google Scholar

  • L. Lafon. Galenic Form for Oral Administration and its Method of Preparation by Lyophilization of an Oil-in-water Emulsion, Eur. Pat. 0,159,237, 1985.Google Scholar

  • A. C. Liang and H. Chen Li-Lan, Fast-dissolving intraoral drug delivery systems, Expert Opin. Ther. Pat. 11 (2001) 981-986; DOI: 10.1517/13543776.11.6.981.CrossrefGoogle Scholar

  • W. R. Pfister, L. H. Chen and D. W. Ren, Compositions and Methods for Mucosal Delivery, U.S. Pat. 6,552,024, 22 Apr 2003.Google Scholar

About the article

Published Online: 2011-06-17

Published in Print: 2011-06-01

Citation Information: Acta Pharmaceutica, Volume 61, Issue 2, Pages 117–139, ISSN (Online) 1846-9558, ISSN (Print) 1330-0075, DOI: https://doi.org/10.2478/v10007-011-0020-8.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Leonie Wagner-Hattler, Katharina Wyss, Joachim Schoelkopf, Jörg Huwyler, and Maxim Puchkov
International Journal of Pharmaceutics, 2017
Hesham M. Tawfeek, Waleed Faisal, and Ghareb M. Soliman
Pharmaceutical Development and Technology, 2017, Page 1
Laurel A. Lagenaur, Iwona Swedek, Peter P. Lee, Thomas P. Parks, and Cheryl A. Stoddart
PLOS ONE, 2015, Volume 10, Number 4, Page e0122730
Matteo Ferrando, Diego Bagnasco, Giovanni Passalacqua, Gilda Varricchi, and Giorgio Walter Canonica
Expert Opinion on Biological Therapy, 2016, Volume 16, Number 11, Page 1435
Giorgio Walter Canonica, Johann Christian Virchow, Petra Zieglmayer, Christian Ljørring, Ida Mosbech Smith, and Holger Mosbech
Expert Review of Clinical Immunology, 2016, Volume 12, Number 8, Page 805
Sara M. Hanning, Felipe L. Lopez, Ian C.K. Wong, Terry B. Ernest, Catherine Tuleu, and Mine Orlu Gul
International Journal of Pharmaceutics, 2016, Volume 512, Number 2, Page 355
Ludger Klimek, Holger Mosbech, Petra Zieglmayer, Dorte Rehm, Brian Sonne Stage, and Pascal Demoly
Expert Review of Clinical Immunology, 2016, Volume 12, Number 4, Page 369
Jonathan Goole and Karim Amighi
International Journal of Pharmaceutics, 2016, Volume 499, Number 1-2, Page 376
Felipe L Lopez, Terry B Ernest, Catherine Tuleu, and Mine Orlu Gul
Expert Opinion on Drug Delivery, 2015, Volume 12, Number 11, Page 1727
Manjeet B. Pimparade, Joseph T. Morott, Jun-Bom Park, Vijay I. Kulkarni, Soumyajit Majumdar, S.N. Murthy, Zhuoyang Lian, Elanor Pinto, Vivian Bi, Thomas Durig, Reena Murthy, Shivakumar H.N, K. Vanaja, C. Kumar P, and Michael A. Repka
International Journal of Pharmaceutics, 2015, Volume 487, Number 1-2, Page 167
Sally Gittings, Neil Turnbull, Brian Henry, Clive J. Roberts, and Pavel Gershkovich
European Journal of Pharmaceutics and Biopharmaceutics, 2015, Volume 91, Page 16
Dong-Jin Jang, Soo Kyung Bae, and Euichaul Oh
Biomedicine & Pharmacotherapy, 2014, Volume 68, Number 8, Page 1117
Masahiro Niwa and Yasuhiro Hiraishi
International Journal of Pharmaceutics, 2014, Volume 461, Number 1-2, Page 342
Fan Zeng, Ling Wang, Wenjing Zhang, Kejing Shi, and Li Zong
AAPS PharmSciTech, 2013, Volume 14, Number 2, Page 854
Ke-Hsun Lin, Yung-Wei Lin, Yu-Ching Wen, and Liang-Ming Lee
The Aging Male, 2012, Volume 15, Number 4, Page 246
Julia T. Schiele, Renate Quinzler, Hans-Dieter Klimm, Markus G. Pruszydlo, and Walter E. Haefeli
European Journal of Clinical Pharmacology, 2013, Volume 69, Number 4, Page 937
Alejandro Sosnik, Katia P Seremeta, Julieta C Imperiale, and Diego A Chiappetta
Expert Opinion on Drug Delivery, 2012, Volume 9, Number 3, Page 303

Comments (0)

Please log in or register to comment.
Log in