Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year


IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
Online
ISSN
1846-9558
See all formats and pricing
More options …
Volume 62, Issue 2 (Jun 2012)

Issues

Interfacial rheology: An overview of measuring techniques and its role in dispersions and electrospinning

Jan Pelipenko / Julijana Kristl / Romana Rošic / Saša Baumgartner / Petra Kocbek
Published Online: 2012-06-28 | DOI: https://doi.org/10.2478/v10007-012-0018-x

Interfacial rheology: An overview of measuring techniques and its role in dispersions and electrospinning

Interfacial rheological properties have yet to be thoroughly explored. Only recently, methods have been introduced that provide sufficient sensitivity to reliably determine viscoelastic interfacial properties. In general, interfacial rheology describes the relationship between the deformation of an interface and the stresses exerted on it. Due to the variety in deformations of the interfacial layer (shear and expansions or compressions), the field of interfacial rheology is divided into the subcategories of shear and dilatational rheology. While shear rheology is primarily linked to the long-term stability of dispersions, dilatational rheology provides information regarding short-term stability. Interfacial rheological characteristics become relevant in systems with large interfacial areas, such as emulsions and foams, and in processes that lead to a large increase in the interfacial area, such as electrospinning of nanofibers.

Medfazna reologija: Pregled merilnih tehnik in njen pomen v disperzijah in elekrostatskemu sukanju

Medfazne reološke lastnosti so še dokaj neraziskane. Šele pred kratkim so razvili metode, s katerimi je mogoče z zadostno občutljivostjo in natančnostjo določiti viskoelastične lastnosti medfaze. Medfazna reologija opisuje odnos med deformacijo medfaze in silo, ki to deformacijo povzroči. Zaradi različnih deformacij medfazne plasti (strig in raztezanje, oziroma krčenje) se tudi medfazna reologija deli na strižno in dilatacijsko. Strižne reološke lastnosti medfaze se odražajo v dolgotrajni stabilnosti disperzij, medtem ko sedilatacijske predvsem v kratkotrajni stabilnosti. Poznavanje medfaznih reoloških lastnosti je pomembno v sistemih z velikimi medfaznimi površinami, kot so emulzije in pene ter pri procesih, kjer pride do velikega povečanja medfazne površine, kot je elektrostatsko sukanje nanovlaken.

Keywords: interfacial rheology; emulsions; foams; electrospinning; nanofibers; nanotechnology

Keywords: medfazna reologija; emulzije; pene; elektrostatsko sukanje; nanovlakna; nanotehnologija

  • J. M. Rodríguez Patino, C. Carrera Sánchez and M. R. Rodríguez Niño, Implications of interfacial characteristics of food foaming agents, Adv. Colloid Interfac. 140 (2008) 95-113; DOI: 10.1016/j.cis.2007.12.007.CrossrefGoogle Scholar

  • R. Rošic, J. Pelipenko, M. Bešter-Rogač, S. Baumgartner and J. Kristl, Rheology of polymer solutions in predicting nanofiber formation by electrospinning, Eur. Polym. J. (2012); DOI: 10.1016/j.eurpolymj.2012.05.001.CrossrefGoogle Scholar

  • R. Miller, J. K. Ferri, A. Javadi, J. Krgel, N. Mucic and R. Wüstneck, Rheology of interfacial layers, Colloid Polym. Sci. 288 (2010) 937-950; DOI: 10.1007/s00396-010-2227-5.CrossrefGoogle Scholar

  • J. Kocevar Nared, J. Kristl and J. Smid Korbar, Comparative rheological investigation of crude gastric mucin and natural gastric mucus, Biomaterials 18 (1997) 677-681; DOI: 10.1016/S0142-9612(96)00180-9.PubMedCrossrefGoogle Scholar

  • M. Gasperlin, J. Kristl and J. Smid Korbar, Viscoelastic behaviour of semi-solid w/o emulsion systems, STP Pharma Sci. 7 (1997) 158-163.Google Scholar

  • M. Gasperlin, L. Tusar and M. Tusar, Viscosity prediction of lipophilic semisolid emulsion systems by neural network modeling, Int. J. Pharm. 196 (2000) 37-50; DOI: 10.1016/S0378-5173(99)00443-3.CrossrefGoogle Scholar

  • Z. Khattari, Y. Ruschel, H. Z. Wen, A. Fischer and T. M. Fischer, Compactification of a myelin mimetic Langmuir monolayer upon adsorption and unfolding of myelin basic protein, J. Phys. Chem. 109 (2005) 3402-3407; DOI: 10.1021/jp045493z.CrossrefGoogle Scholar

  • B. S. Murray, Rheological properties of protein films, Curr. Opin. Colloid In. 16 (2011) 27-35; DOI: 10.1016/j.cocis.2010.06.005.CrossrefGoogle Scholar

  • R. M. Prokop and A. W. Neumann, Measurement of the interfacial properties of lung surfactant, Curr. Opin. Colloid In. 1 (1996) 677-681; DOI: 10.1016/S1359-0294(96)80108-7.CrossrefGoogle Scholar

  • R. Wüstneck, J. Perez-Gil, N. Wüstneck, A. Cruz, V. B. Fainerman and U. Pison, Interfacial properties of pulmonary surfactant layers, Adv. Colloid Interfac. 117 (2005) 33-58; DOI: 10.1016/j.cis.2005.05.001.CrossrefGoogle Scholar

  • J. Krägel and S. R. Derkatch, Interfacial shear rheology, Curr. Opin. Colloid In. 15 (2010) 246-255; DOI: 10.1016/j.cocis.2010.02.001.CrossrefGoogle Scholar

  • T. G. Mezger, The Rheology Handbook, 2nd Edition, Vincentz Network, Hannover 2006, pp. 16-26.Google Scholar

  • K. Masschaele, S. Vandebril, J. Vermant and B. Madivala, Rheology-Vol.1, EOLSS 2009, pp. 414-439.Google Scholar

  • T. F. Tadros, Applied Surfactants; Principles and Applications, Willey-VCH, Weinheim 2005, pp. 162-168.Google Scholar

  • R. Miller and L. Liggieri, Interfacial Rheology, Vol. 1, Brill, Boston 2009, pp. 1-178.Google Scholar

  • A. Zupančič Valant, Uvod v reologijo, Univerza v Ljubljani, Fakulteta za kemijo in kemijsko tehnologijo, Ljubljana 2007, pp. 29-48.Google Scholar

  • R. J. Crawford, Plastics Engineering, 3rd edition, Elsevier grad, United Kingdom 1998, pp. 84-95.Google Scholar

  • A. Torcello-Gómez, J. Maldonado-Valderrama, M. J. Gálvez-Ruiz, A. Martín-Rodríguez, M. A. Cabrerizo-Vílchez and J. Vicente, Surface rheology of sorbitan tristearate and β-lactoglobulin: Shear and dilatational behavior, J. Non-Newton. Fluid 166 (2011) 713-722; DOI: 10.1016/j.jnnfm.2011.03.008.CrossrefGoogle Scholar

  • J. Maldonado-Valderrama and J. M. Rodríguez Patino, Interfacial rheology of protein-surfactant mixtures, Curr. Opin. Colloid In. 15 (2010) 271-282; DOI: 10.1016/j.cocis.2009.12.004.CrossrefGoogle Scholar

  • J. Krgel, S. R. Derkatch and R. Miller, Interfacial shear rheology of protein-surfactant layers, Adv. Colloid Interfac. 144 (2008) 38-53; DOI: 10.1016/j.cis.2008.08.010.CrossrefGoogle Scholar

  • S. Reynaert, C. F. Brooks, P. Moldenaers, J. Vermant and G. G. Fuller, Analysis of the magnetic rod interfacial stress rheometer, J. Rheol. 52 (2008) 261-285; DOI: 10.1122/1.2798238.CrossrefGoogle Scholar

  • T. Verwijlen, P. Moldenaers, H. A. Stone and J. Vermant, Study of the flow field in the magnetic rod interfacial stress rheometer, Langmuir 27 (2011) 9345-9358; DOI: 10.1021/la201109u.PubMedCrossrefGoogle Scholar

  • J. Ding, H. E. Warriner and J. A. Zasadzinski, Magnetic needle viscometer for Langmuir mono-layers, Langmuir 18 (2002) 2800-2806; DOI: 10.1021/la015589.CrossrefGoogle Scholar

  • F. Ravera, G. Loglio and V. I. Kovalchuk, Interfacial dilational rheology by oscillating bubble/drop methods, Curr. Opin. Colloid In. 15 (2010) 217-228; DOI: 10.1016/j.cocis.2010.04.001.CrossrefGoogle Scholar

  • V. B. Fainerman, D. Möbius and R. Miller, Surfactants: Chemistry, Interfacial Properties, Applications, Elsevier Science, Amsterdam 2001, pp. 341-348.Google Scholar

  • B. A. Noskov, A. V. Akentiev, A. Yu. Bilibin, I. M. Zorin and R. Miller, Dilatational surface visco-elasticity of polymer solutions, Adv. Colloid Interfac. 104 (2003) 245-271; DOI: 10.1016/S0001-8686(03)00045-9.CrossrefGoogle Scholar

  • B. A. Noskov, Dilational surface rheology of polymer and polymer/surfactant solutions, Curr. Opin. Colloid In. 15 (2010) 229-236; DOI: 10.1016/j.cocis.2010.01.006.CrossrefGoogle Scholar

  • S. C. Russev, N. Alexandrov, K. G. Marinova, K. D. Danov, N. D. Denkov, L. Lyutov, V. Vulchev and C. Bilke-Krause, Instrument and methods for surface dilatational rheology measurements, Rev. Sci. Instrum. 79 (2008) 104102; DOI: 10.1063/1.3000569.CrossrefGoogle Scholar

  • P. Gupta, C. Elkins, T. Long and G. Wilkes, Electrospinning of linear homopolymers of poly(methyl methacrylate): exploring relationships between fiber formation, viscosity, molecular weight and concentration in a good solvent, Polymer 46 (2005) 4799-4810; DOI: 10.1016/j.polymer.2005.04.021.CrossrefGoogle Scholar

  • F. Ravera, G. Loglio, P. Pandolfini, E. Santini and L. Liggieri, Determination of the dilational viscoelasticity by the oscillating drop/bubble method in a capillary pressure tensiometer, Colloid. Surface. A 365 (2010) 2-13; DOI: 10.1016/j.colsurfa.2010.01.040.CrossrefGoogle Scholar

  • P. Wilde, A. Mackie, F. Husband, P. Gunning and V. Morris, Proteins and emulsifiers at liquid interfaces, Adv. Colloid Interfac. 108-109 (2004) 63-71; DOI: 10.1016/j.cis.2003.10.011.CrossrefGoogle Scholar

  • V. B. Fainerman, E. H. Lucassen-Reynders and R. Miller, Description of the adsorption behaviour of proteins at water/fluid interfaces in the framework of a two-dimensional solution model, Adv. Colloid Interfac. 106 (2003) 237-259; DOI: 10.1016/S0001-8686(03)00112-X.CrossrefGoogle Scholar

  • D. Langevin, Influence of interfacial rheology on foam and emulsion properties, Adv. Colloid Interfac. 88 (2000) 209-222; DOI: 10.1016/S0001-8686(00)00045-2.CrossrefGoogle Scholar

  • J. L. Ventureira, A. J. Bolontrade, F. Speroni, E. David-Briand, A. A. Scilingo, M. H. Ropers, F. Boury, M. C. Añón and M. Anton, Interfacial and emulsifying properties of amaranth (Amaranthus hypochondriacus) protein isolates under different conditions of pH, LWT-Food Sci. Technol. 45 (2012) 1-7; DOI: 10.1016/j.lwt.2011.07.024.CrossrefGoogle Scholar

  • M. A. Bos and T. Vliet, Interfacial rheological properties of adsorbed protein layers and surfactants: a review, Adv. Colloid Interfac. 91 (2001) 437-471; DOI: 10.1016/S0001-8686(00)00077-4.CrossrefGoogle Scholar

  • A. G. Bykov, Shi-Yow Lin, G. Loglio, V. V. Lyadinskaya, R. Miller and B. A. Noskov, Impact of surfactant chain length on dynamic surface properties of alkyltrimethylammonium bromide/polyacrylic acid solutions, Colloid. Surface. A 354 (2010) 382-389; DOI: 10.1016/j.colsurfa.2009.09.015.CrossrefGoogle Scholar

  • W. J. Mcauley, D. S. Jones and V. L. Kett, Characterisation of the interaction of lactate dehydrogenase with Tween-20 using isothermal titration calorimetry, interfacial rheometry and surface tension measurements, J. Pharm. Sci. 98 (2009) 2659-2669; DOI: 10.1002/jps.21640.CrossrefGoogle Scholar

  • E. Dickinson, Adsorbed protein layers at fluid interfaces: interactions, structure and surface rheology, Colloid. Surface. B 15 (1999) 161-176; DOI: 10.1016/S0927-7765(99)00042-9.CrossrefGoogle Scholar

  • A. R. Mackie, A. P. Gunning, P. J. Wilde and V. J. Morris, Orogenic displacement of protein from the oil/water interface, Langmuir 16 (2000) 2242-2247; DOI: 10.1021/la990711e.CrossrefGoogle Scholar

  • C. Carrera Sánchez, M. Rosario Rodríguez Niño, A. Lucero Caro and J. M. Rodríguez Patino, Biopolymers and emulsifiers at the air-water interface, Implications in food colloid formulations, J. Food Eng. 67 (2005) 225-234; DOI: 10.1016/j.jfoodeng.2004.05.065.CrossrefGoogle Scholar

  • A. G. Bykov, Shi-Yow Lin, G. Loglio, R. Miller and B. A. Noskov, Kinetics of adsorption layer formation in solutions of polyacid/surfactant complexes, J. Phys. Chem. C 113 (2009) 5664-5671; DOI: 10.1021/jp810471y.CrossrefGoogle Scholar

  • B. A. Noskov, G. Loglio and R. Miller, Dilational surface visco-elasticity of polyelectrolyte/surfactant solutions: Formation of heterogeneous adsorption layers, Adv. Colloid Interfac. 168 (2011) 179-197; DOI: 10.1016/j.cis.2011.02.010.CrossrefGoogle Scholar

  • J. M. Rodríguez Patino, C. C. Sánchez, M. C. Fernández and M. R. Niño, Protein displacement by monoglyceride at the air-water interface evaluated by surface shear rheology combined with Brewster angle microscopy, J. Phys. Chem. B 111 (2007) 8305-8313; DOI: 10.1021/jp071994j.CrossrefGoogle Scholar

  • S. Vandebril, J. Vermant and P. Moldenaers, Efficiently suppressing coalescence in polymer blends using nanoparticles: role of interfacial rheology, Soft Matter 6 (2010) 3353-3362; DOI: 10.1039/b927299b.CrossrefGoogle Scholar

  • B. Madivala, S. Vandebril, J. Fransaerb and J. Vermant, Exploiting particle shape in solid stabilized emulsions, Soft Matter 5 (2009) 1717-1727; DOI: 10.1039/b816680c.CrossrefGoogle Scholar

  • P. A. Wierenga and H. Gruppen, New views on foams from protein solutions, Curr. Opin. Colloid In. 15 (2010) 365-373; DOI: 10.1016/j.cocis.2010.05.017.CrossrefGoogle Scholar

  • L. Piazza, J. Gigli and A. Bulbafello, Interfacial rheology study of espresso coffee foam structure and properties, J. Food Eng. 84 (2008) 420-429; DOI: 10.1016/j.jfoodeng.2007.06.001.CrossrefGoogle Scholar

  • T. Croguennec, A. Renault, S. Beaufils, J. Dubois and S. Pezennec, Interfacial properties of heat-treated ovalbumin, J. Colloid Interf. Sci. 315 (2007) 627-636; DOI: 10.1016/j.jcis.2007.07.041.CrossrefGoogle Scholar

  • J. Maldonado-Valderrama, A. Martßn-Rodriguez, M. J. Gálvez-Ruiz, R. Miller, D. Langevin and M. A. Cabrerizo-Vílchez, Foams and emulsions of β-casein examined by interfacial rheology, Colloid. Surface. A 323 (2008) 116-122; DOI: 10.1016/j.colsurfa.2007.11.003.CrossrefGoogle Scholar

  • T. J. Wooster and M. A. Augustin, Rheology of whey protein-dextran conjugate films at the air/water interface, Food Hydrocolloid. 21 (2007) 1072-1080; DOI: 10.1016/j.foodhyd.2006.07.015.CrossrefGoogle Scholar

  • D. A. Kim, M. Cornec and G. Narsimhan, Effect of thermal treatment on interfacial properties of β-lactoglobulin, J. Colloid Interf. Sci. 285 (2005) 100-109; DOI: 10.1016/j.jcis.2004.10.044.CrossrefGoogle Scholar

  • A. Sanfeld and A. Steinchen, Emulsions stability, from dilute to dense emulsions - Role of drops deformation, Adv. Colloid Interfac. 140 (2008) 1-65; DOI: 10.1016/j.cis.2007.12.005.CrossrefGoogle Scholar

  • M. Cegnar, J. Kristl and J. Kos, Nanoscale polymer carriers to deliver chemotherapeutic agents to tumours, Expert Opin. Biol. Th. 5 (2005) 1557-1569; DOI: 10.1517/14712598.5.12.1557.CrossrefGoogle Scholar

  • K. Teskac and J. Kristl, The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol, Int. J. Pharm. 390 (2010) 61-69; DOI: 10.1016/j.ijpharm.2009.10.011.CrossrefGoogle Scholar

  • N. Bhardwaj and S. C. Kundu, Electrospinning: A fascinating fiber fabrication technique, Biotechnol. Adv. 28 (2010) 325-347; DOI: 10.1016/j.biotechadv.2010.01.004.CrossrefPubMedGoogle Scholar

  • G. C. Rutledge and S. V. Fridrikh, Formation of fibers by electrospinning, Adv. Drug Deliver. Rev. 59 (2007) 1384-1391; DOI: 10.1016/j.addr.2007.04.020.CrossrefGoogle Scholar

  • R. Rošic, P. Kocbek, S. Baumgartner and J. Kristl, Electro-spun hydroxyethyl cellulose nanofibers: The relationship between structure and process, J. Drug Deliv. Sci. Tec. 21 (2011) 229-236.Google Scholar

  • X. Geng, O. H. Kwon and J. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution, Biomaterials 26 (2005) 5427-5432; DOI: 10.1016/j.biomaterials.2005.01.066.PubMedCrossrefGoogle Scholar

  • M. G. McKee, G. L. Wilkes, R. H. Colby and T. E. Long, Correlations of solution rheology with electrospun fiber formation of linear and branched polyesters, Macromolecules 37 (2004) 1760-1767; DOI: 10.1021/ma035689h.CrossrefGoogle Scholar

  • Q. P. Pham, U. Sharma and A. G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: A review, Tissue Eng. 12 (2006) 1197-1211; DOI: 10.1089/ten.2006.12.1197.PubMedCrossrefGoogle Scholar

  • O. Regev, S. Vandebril and E. C. Zussman, The role of interfacial viscoelasticity in the stabilization of an electrospun jet, Polymer 51 (2010) 2611-2620; DOI: 10.1016/j.polymer.2010.03.061.CrossrefGoogle Scholar

  • P. Erni, P. Fischer, E. J. Windhab, V. Kusnezov, H. Stettin and J. Läuger, Stress- and strain-controlled measurements of interfacial shear viscosity and viscoelasticity at liquid/liquid and gas/liquid interfaces, Rev. Sci. Instrum. 74 (2003) 4916-4925; DOI: 10.1063/1.1614433.CrossrefGoogle Scholar

  • P. Ahlin, J. Kristl, M. Sentjurc, J. Strancar and S. Pecar, Influence of spin probe structure on its distribution in SLN dispersions, Int. J. Pharm. 196 (2000) 241-244; DOI: 10.1016/S0378-5173(99)00431-7.CrossrefGoogle Scholar

  • P. Ahlin, J. Kristl, S. Pecar, J. Strancar and M. Sentjurc, The effect of lipophilicity of spin-labeled compounds on their distribution in solid lipid nanoparticle dispersions studied by electron paramagnetic resonance, J. Pharm. Sci. 92 (2001) 58-66; DOI: 10.1002/jps.10277.CrossrefGoogle Scholar

About the article


Published Online: 2012-06-28

Published in Print: 2012-06-01


Citation Information: Acta Pharmaceutica, ISSN (Online) 1846-9558, ISSN (Print) 1330-0075, DOI: https://doi.org/10.2478/v10007-012-0018-x.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Duyang Zang, Yinkai Yu, Zhen Chen, Xiaoguang Li, Hongjing Wu, and Xingguo Geng
Advances in Colloid and Interface Science, 2017, Volume 243, Page 77
[2]
Paraskevi Paximada, Yolanda Echegoyen, Apostolos A. Koutinas, Ioanna G. Mandala, and Jose M. Lagaron
Food Hydrocolloids, 2017, Volume 64, Page 123
[3]
Xiang Wang, Gaofeng Zheng, Lei Xu, Han Wang, and Wenwang Li
AIP Advances, 2016, Volume 6, Number 10, Page 105103
[4]
Romana Rošic, Petra Kocbek, Jan Pelipenko, Julijana Kristl, and Saša Baumgartner
Acta Pharmaceutica, 2013, Volume 63, Number 3
[5]
Benjamín Caruso, Ernesto E. Ambroggio, Natalia Wilke, and Gerardo Daniel Fidelio
Colloids and Surfaces B: Biointerfaces, 2016, Volume 146, Page 180
[6]
Gerson Lopes Teixeira, Luana Carolina Bosmuler Züge, Joana Léa Meira Silveira, Agnes de Paula Scheer, and Rosemary Hoffmann Ribani
Journal of Surfactants and Detergents, 2016, Volume 19, Number 4, Page 725
[7]
Dianlin Wang, Meiqin Lin, Zhaoxia Dong, Lu Li, Shaoping Jin, Dingcheng Pan, and Zihao Yang
Energy & Fuels, 2016, Volume 30, Number 3, Page 1947
[8]
Samad Mussa Farkhani and Alireza Valizadeh
IET Nanobiotechnology, 2014, Volume 8, Number 2, Page 83
[9]
J. Pelipenko, P. Kocbek, and J. Kristl
International Journal of Pharmaceutics, 2015, Volume 484, Number 1-2, Page 57
[10]
Michael Maas, Ulrike Hess, and Kurosch Rezwan
Current Opinion in Colloid & Interface Science, 2014, Volume 19, Number 6, Page 585
[11]
P. Peer, M. Stenicka, V. Pavlinek, P. Filip, I. Kuritka, and J. Brus
Polymer Testing, 2014, Volume 39, Page 115
[13]
Romana Rošic, Jan Pelipenko, Julijana Kristl, Petra Kocbek, Marija Bešter-Rogač, and Saša Baumgartner
European Polymer Journal, 2013, Volume 49, Number 2, Page 290

Comments (0)

Please log in or register to comment.
Log in