Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year

IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
See all formats and pricing
More options …
Volume 62, Issue 4


Solid lipid based nanocarriers: An overview / Nanonosači na bazi čvrstih lipida: Pregled

Chandrakantsing Pardeshi / Pravin Rajput / Veena Belgamwar / Avinash Tekade / Ganesh Patil / Kapil Chaudhary
  • Formulation Research and Development Department, Marksans Pharma., Ltd., Verna Industrial Estate, Verna-403722 India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abhijeet Sonje
Published Online: 2013-01-15 | DOI: https://doi.org/10.2478/v10007-012-0040-z

In the era of nanoparticulate controlled and site specific drug delivery systems, use of solid lipids to produce first generation lipid nanoparticles, solid lipid nanoparticles (SLN), became a revolutionary approach in the early nineties. The present review is designed to provide an insight into how SLN are finding a niche as promising nanovectors and forms a sound basis to troubleshoot the existing problems associated with traditional systems. Herein, authors had tried to highlight the frontline aspects prominent to SLN. An updated list of lipids, advanced forms of SLN, methods of preparation, characterization parameters, and various routes of administration of SLN are explored in-depth. Stability, toxicity, stealthing, targeting efficiency and other prospectives of SLN are also discussed in detail. The present discussion embodies the potential of SLN, now being looked up by various research groups around the world for their utility in the core areas of pharmaceutical sciences, thereby urging pharmaceutical industries to foster their scale-up.

Pojava nanočestica za kontroliranu i ciljanu isporuku lijekova izrađenih iz čvrstih li­pida (SLN) imala je ranih devedesetih godina revolucionarno značenje. U ovom preglednom radu opisani su SLN sustavi kao korisni nanovektori za isporuku lijekova. Autori ističu prednosti SLN sustava, daju pregled lipida za njihovu izradu, opisuju metode pri­prave, karakterizacijske parametre i različite načine primjene SLN-a. Osim toga, detaljno se raspravlja o njihovoj stabilnosti, toksičnosti te mogućnosti ciljane isporuke. Istaknute su mogućnosti koje pružaju SLNi u području farmaceutskih znanosti i njihova moguća primjena u farmaceutskoj industriji.

Keywords: colloidal drug carrier; solid lipid nanoparticles (SLN); stability; targeting efficiency; cytotoxicity; stealthing of SLN

Ključne riječi: koloidni nosači lijekova; nanočestice na bazi čvrstih lipida (SLN); stabilnost; mogu­ćnost ciljane isporuke; citotoksičnost; pritajenost

  • 1. C. V. Pardeshi, P. V. Rajput, V. S. Belgamwar and A. R. Tekade, Formulation, optimization and evaluation of spray-dried mucoadhesive microspheres as intranasal carriers for valsartan, J. Microencapsul. 29 (2011) 103-114; DOI: 10.3109/02652048.2011.630106.CrossrefGoogle Scholar

  • 2. W. Mehnert and K. Mader, Solid lipid nanoparticles: Production, characterization and applications, Adv. Drug. Del. Rev. 47 (2001) 165-196; DOI: 10.1016/S0169-409X(01)00105-3.CrossrefGoogle Scholar

  • 3. S. Mukherjee, S. Ray and R. S. Thakur, Solid lipid nanoparticles: A modern formulation approach in drug delivery system, Ind. J. Pharm. Sci. 71 (2009) 349-358.Google Scholar

  • 4. R. H. Müller, K. Mäder and S. Gohla, Solid lipid nanoparticles (SLN) for controlled drug delivery - A review of the state of the art, Eur. J. Pharm. Biopharm. 50 (2000) 161-177.CrossrefGoogle Scholar

  • 5. R. H. Müller, M. Radtke and S. A. Wissing, Nanostructured lipid matrices for improved microencapsulation of drugs, Int. J. Pharm. 242 (2002) 121-128; DOI: 10.1016/S0378-5173(02)00180-1.CrossrefGoogle Scholar

  • 6. R. H. Müller, M. Radtke and S. A. Wissing, Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations, Adv. Drug Del. Rev. 54 (Suppl. 1) (2002) S131-S155; DOI: 10.1016/S0169-409X(02)00118-7.CrossrefGoogle Scholar

  • 7. R. H. Müller, R. D. Petersen, A. Hommoss and J. Pardeike, Nanostructured lipid carriers (NLC) for cosmetic dermal products, Adv. Drug Del. Rev. 59 (2007) 522-530; DOI: 10.1016/j.addr.2007.04.012.CrossrefGoogle Scholar

  • 8. J. Y. Fang, C. L. Fang, C. H. Liu and Y. H. Su, Lipid nanoparticles as vehicles for psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers, Eur. J. Pharm. Biopharm. 70 (2008) 633-640; DOI: 10.1016/j.ejpb.2008.05.008.CrossrefGoogle Scholar

  • 9. E. B. Souto, S. A. Wissing, C. M. Barbosa and R. H. Müller, Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery, Int. J. Pharm. 278 (2004) 71-77; DOI: 10.1016/j.ijpharm.2004.02.032.CrossrefGoogle Scholar

  • 10. M. Joshi and V. Patravale, Nanostructured lipid carriers (NLC) based gel of celecoxib, Int. J. Pharm. 346 (2008) 124-132; DOI: 10.1016/j.ijpharm.2007.05.060.CrossrefGoogle Scholar

  • 11. V. Teeranachaideekul, R. H. Müller and V. B. Junyaprasert, Encapsulation of ascorbyl palmitate in nanostructured lipid carriers (NLC) - Effect of formulation parameters on physicochemical stability, Int. J. Pharm. 340 (2007) 198-206; DOI: 10.1016/j.ijpharm.2007.03.022.CrossrefGoogle Scholar

  • 12. S. Doktorovova, J. Araujo, M. L. Garcia, E. Rakovsky and E. B. Souto, Formulating fluticasone propionate in novel PEG-containing nanostructured lipid carriers (PEG-NLC), Colloid Surfacec B. 75 (2010) 538-542; DOI: 10.1016/j.colsurfb.2009.09.033.CrossrefGoogle Scholar

  • 13. C. Olbrich, A. Gessner, W. Schroder, O. Kayser and R. H. Müller, Lipid-drug conjugate of the hydrophilic drug diminazine-cytotoxicity testing and mouse serum adsorption, J. Control. Release 96 (2004) 425-435; DOI: 10.1016/j.jconrel.2004.02.024.CrossrefGoogle Scholar

  • 14. H. L. Wong, A. M. Rauth, R. Bendayan and X. Y. Wu, In-vivo evaluation of a new polymer-lipid hybrid nanoparticle (PLN) formulation of doxorubicin in a murine solid tumor model, Eur. J. Pharm. Biopharm. 65 (2007) 300-308; DOI: 10.1016/j.ejpb.2006.10.022.CrossrefGoogle Scholar

  • 15. H. L. Wong, A. M. Rauth, R. Bendayan and X. Y. Wu, Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new polymer-lipid hybrid nanoparticles (PLN) for enhanced treatment for multidrug-resistant breast cancer, J. Control. Release 116 (2006) 275-284; DOI: 10.1016/j.jconrel.2006.09.007.CrossrefGoogle Scholar

  • 16. L. Zhang, J. M. Chan, F. X. Gu, A. Z. Wang, A. F. Radovic-Moreno, F. Alexis, R. Langer and O. C. Farokhzad, Self-assembled lipid-polymer hybrid nanoparticles: A robust drug delivery platform, ACS Nano. 2 (2008) 1696-1702; DOI: 10.1021/nn800275r.CrossrefGoogle Scholar

  • 17. Y. Li, H. L. Wong, A. J. Shuhendler, A. M. Rauth and X. Y. Wu, Molecular interactions, internal structure and drug release kinetics of rationally developed polymer-lipid hybrid nanoparticles, J. Control. Release. 128 (2008) 60-70; DOI: 10.1016/j.jconrel.2008.02.014.CrossrefGoogle Scholar

  • 18. C. Salvador-Morales, L. Zhang, R. Langer and O. C. Farokhzad, Immunocompatibility properties of polymer-lipid hybrid nanoparticles with heterogeneous surface functional groups, Biomaterials 30 (2009) 2231-2240; DOI: 10.1016/j.biomaterials.2009.01.005.CrossrefGoogle Scholar

  • 19. R. Lander, W. Manger, M. Scouloudis, A. Ku, C. Davis and A. Lee, Gaulin homogenization: a mechanistic study, Biotechnol. Prog. 16 (2000) 80-85; DOI: 10.1021/bp990135c.CrossrefGoogle Scholar

  • 20. R. H. Müller, S. Benita and B. Bohm, Emulsions and nanosuspensions for the formulation of poorly soluble drugs, Int. J. Pharm. 212 (2001) 143-144.Google Scholar

  • 21. B. Siekmann and K. Westesen, Solid lipid nanoparticles stabilized by tyloxapol, Eur. J. Pharm. Sci. 2 (1994) 117-194; DOI: 10.1016/0928-0987(94)90407-3.CrossrefGoogle Scholar

  • 22. H. Bunjes, B. Siekmann and K. Westesen, Emulsions of supercooled melts-a novel drug delivery system, in Submicron Emulsions in Drug Targeting and Delivery, Ed. S. Benita, Hardwood Academic Publishers, Amsterdam 1998, pp. 175-204.Google Scholar

  • 23. V. Venkateswarlu and K. Manjunath, Preparation, characterization and in-vitro release kinetics of clozapine solid lipid nanoparticles, J. Control. Release 95 (2004) 627-638; DOI: 10.1016/j.jconrel.2004.01.005.CrossrefGoogle Scholar

  • 24. S. Gande, V. Vobalaboina, M. Kopparam, V. Venkateswarlu and S. Vemula, Preparation, characterization, and in vitro and in vivo evaluation of lovastatin solid lipid nanoparticles, AAPS PharmSciTech. 8 (2007) E1-E9.Google Scholar

  • 25. S. P. Vyas and R. K. Khar, Targeted and Controlled Drug Delivery: A Novel Carrier System, 1st ed., CBS Publishers and Distributors, New Delhi 2002, pp. 346-348.Google Scholar

  • 26. S. Xie, L. Zhu, Z. Dong, X. Wang, Y. Wang, X. Li and W. Zhou, Preparation, characterization and pharmacokinetics of enrofloxacin loaded solid lipid nanoparticles: Influences of fatty acids, Colloid Surface B 83 (2011) 382-387; DOI: 10.1016/j.colsurfb.2010.12.014; DOI: 10.1016/j.colsurfb.2010.12.014.CrossrefGoogle Scholar

  • 27. A. V. Heydenreich, R. Westmeier, N. Pedersen, H. S. Poulsen and H. G. Kristensen, Preparation and purification of cationic solid lipid nanospheres-effects on particle size, physical stability and cell toxicity, Int. J. Pharm. 254 (2003) 83-87; DOI: 10.1016/S0378-5173(02)00688-9.CrossrefGoogle Scholar

  • 28. N. K. Jain, Advances in Controlled and Novel Drug Delivery, 1st ed., CBS Publishers and Distributors, New Delhi 2001, pp. 418-424.Google Scholar

  • 29. H. Zhou, T. Gu, D. Yang, Z. Jiang and J. Zeng, Griseofulvin solid lipid nanoparticles based on microemulsion technique, Adv. Mater. Res. 197-198 (2011) 47-50; DOI: 10.4028/www.scientific.net/AMR.197-198.47.CrossrefGoogle Scholar

  • 30. M. R. Gasco and L. P. Antonelli, Method for producing solid lipid nanospheres having a narrow size distribution, US Pat. 5,250,236, 05 Oct. 1993.Google Scholar

  • 31. S. Morel, M. R. Gasco and R. Cavalli, Incorporation in lipospheres of [D-Trp-6]LHRH, Int. J. Pharm. 105 (1994) RI-R3; DOI: 10.1016/0378-5173(94)90466-9.CrossrefGoogle Scholar

  • 32. S. Morel, E. Ugazio, R. Cavalli and M. R. Gasco, Thymopentin in solid lipid nanoparticles, Int. J. Pharm. 132 (1996) 259-261; DOI: 10.1016/0378-5173(95)04388-8.CrossrefGoogle Scholar

  • 33. T. Hammady, A. El-Gindy, E. Lejmi, R. S. Dhanikula, P. Moreau and P. Hildgen, Characteristics and properties of nanospheres co-loaded with lipophilic and hydrophilic drug models, Int. J. Pharm. 369 (2009) 185-195; DOI: 10.1016/j.ijpharm.2008.10.034.CrossrefGoogle Scholar

  • 34. M. Trotta, F. Debernardi and O. Caputo, Preparation of solid lipid nanoparticles by solvent emulsification-diffusion technique, Int. J. Pharm. 257 (2003) 153-160; DOI: 10.1016/S0378-5173(03)00135-2.CrossrefGoogle Scholar

  • 35. L. Battaglia, M. Trotta, M. M. E. G. P. A. Solid lipid nanoparticles formed by solvent-in-eater emulsion-diffusion technique, J. Microencapsul. 5 (2009) 394-402.Google Scholar

  • 36. H. Yuan, L. F. Huang, Y. Z. Du, X. Y. Ying, J. You, F. Q. Hu and S. Zeng, Solid lipid nanoparticles prepared by solvent diffusion method in nanoreactor system, Colloid Surface B 61 (2008) 132-137; DOI: 10.1016/j.colsurfb.2007.07.015.CrossrefGoogle Scholar

  • 37. J. Jaiswal, S. K. Gupta and J. Kreuter, Preparation of biodegradable cyclosporine nanoparticles by high-pressure emulsification-solvent evaporation process, J. Control Release 96 (2004) 169-178; DOI: 10.1016/j.jconrel.2004.01.017.CrossrefGoogle Scholar

  • 38. B. Sjostrom and B. Bergenstahl, Preparation of submicron drug particles in lecithin stabilized o/w emulsions I. Model studies of the precipitation of cholesteryl acetate, Int. J. Pharm. 88 (1992) 53-62; DOI: 10.1016/0378-5173(92)90303-J.CrossrefGoogle Scholar

  • 39. K. Okuyama, M. Abdullah, I. W. Lenggoro and F. Iskandar, Preparation of functional nanostructured particles by spray drying, Adv. Powder Technol. 17 (2006) 587-611; DOI: 10.1163/156855206778917733.CrossrefGoogle Scholar

  • 40. K. Okuyama and I. W. Lenggoro, Preparation of nanoparticles via spray route, Chem. Eng. Sci. 58 (2003) 537-547; DOI: 10.1016/S0009-2509(02)00578-X.CrossrefGoogle Scholar

  • 41. P. Luo and T. G. Nieh, Synthesis of ultrafine hydroxyapatite particles by spray dry method, Mater. Sci. Eng. C 3 (1995) 75-78; DOI: 10.1016/0928-4931(95)00089-5.CrossrefGoogle Scholar

  • 42. C. Freitas and R. H. Müller, Spray-drying of solid lipid nanoparticles (SLNTM), Eur. J. Pharm. Biopharm. 46 (1998) 145-151; DOI: 10.1016/S0939-6411(97)00172-0.CrossrefGoogle Scholar

  • 43. P. Tewa-Tange, S. Briancon and H. Fessi, Preparation of redispersible dry nanocapsules by means of spray-drying: Development and characterisation, Eur. J. Pharm. Sci. 30 (2007) 124-135; DOI: 10.1016/j.ejps.2006.10.006.CrossrefGoogle Scholar

  • 44. P. M. Gosselin, R. Thibert, M. Preda and J. N. McMullen, Polymorphic properties of micronized carbamazepine produced by RESS, Int. J. Pharm. 252 (2003) 225-233; DOI: 10.1016/S0378-5173(02)00649-X.CrossrefGoogle Scholar

  • 45. A. J. Thote and R. B. Gupta, Formation of nanoparticles of a hydrophilic drug using supercritical carbon dioxide and microencapsulation for sustained release, Nanomedicine 1 (2005) 85-90; DOI: 10.1016/j.nano.2004.12.001.CrossrefGoogle Scholar

  • 46. J. Vandervoort and A. Ludwig, Preparation and evaluation of drug loaded gelatin nanoparticles for topical ophthalmic use, Eur. J. Pharm. Biopharm. 57 (2004) 251-261; DOI: 10.1016/S0939-6411(03)00187-5.CrossrefGoogle Scholar

  • 47. R. Paliwal, S. Rai, B. Vaidya, K. Khatri, A. K. Goyal, N. Mishra, A. Mehta and S. P. Vyas, Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery, Nanomedicine 5 (2009) 184-191; DOI: 10.1016/j.nano.2008.08.003.CrossrefGoogle Scholar

  • 48. C. Olbrich and R. H. Müller, Enzymatic degradation of SLN - Effect of surfactant and surfactant mixtures, Int. J. Pharm. 180 (1999) 31-39; DOI: 10.1016/S0378-5173(98)00404-9.CrossrefGoogle Scholar

  • 49. C. C. Chen, T. H. Tsai, Z. R. Huang and J. Y. Fang, Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: Physicochemical characterization and pharmacokinetics, Eur. J. Pharm. Biopharm. 74 (2010) 474-482; DOI: 10.1016/j.ejpb.2009.12.008.CrossrefGoogle Scholar

  • 50. S. Y. Xie, S. L. Wang, B. K. Zhao, C. Han, M. Wang and W. Z. Zhou, Effect of PLGA as a polymeric emulsifier on preparation of hydrophilic protein-loaded solid lipid nanoparticles, Colloid Surface B 67 (2008) 199-204; DOI: 10.1016/j.colsurfb.2008.08.018.CrossrefGoogle Scholar

  • 51. R. Cavalli, O. Caputo, M. E. Carlotti, M. Trotta, C. Scarnecchia and M. R. Gasco, Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles, Int. J. Pharm. 148 (1997) 47-54; DOI: 10.1016/S0378-5173(96)04822-3.CrossrefGoogle Scholar

  • 52. C. Schwarz, W. Mehnert, J. S. Lucks and R. H. Müller, Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterisation and sterilization, J. Control Release 30 (1994) 83-96.CrossrefGoogle Scholar

  • 53. W. Abdelwahed, G. Degobert, S. Stainmesse and H. Fessi, Freeze-drying of nanoparticles: Formulation, process and storage considerations, Adv. Drug Del. Rev. 58 (2006) 1688-1713; DOI: 10.1016/j.addr.2006.09.017.CrossrefGoogle Scholar

  • 54. S. D. Allison, Md. C. Molina and T. J. Anchordoquy, Stabilization of lipid/DNA complexes during the freezing step of the lyophilization process: the particle isolation hypothesis, Biochim. Biophys. Acta. 1468 (2000) 127-138; DOI: 10.1016/S0005-2736(00)00251-0.CrossrefGoogle Scholar

  • 55. J. H. Crowe, J. F. Carpenter and L. M. Crowe, The role of vitrification in anhydrobiosis, Annu. Rev. Physiol. 60 (1998) 73-103; DOI: 10.1146/annurev.physiol.60.1.73.CrossrefGoogle Scholar

  • 56. K. Westesen, B. Siekmann and M. H. J. Koch, Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction, Int. J. Pharm. 93 (1993) 189-199; DOI: 10.1016/0378-5173(93)90177-H.CrossrefGoogle Scholar

  • 57. H. Bunjes, K. Westesen and M. H. J. Koch, Crystallization tendencies and polymorphic transitions in triglyceride nanoparticles, Int. J. Pharm. 129 (1996) 159-173; DOI: 10.1016/0378-5173(95)04286-5.CrossrefGoogle Scholar

  • 58. A. Z. Muhlen, C. Schwarz and W. Mehnert, Solid lipid nanoparticles (SLN) for controlled drug delivery - Drug release and release mechanism, Eur. J. Pharm. Biopharm. 45 (1998) 149-155.CrossrefGoogle Scholar

  • 59. S. Chakraborty, D. Shukla, B. Mishra and S. Singh, Lipid - An emerging platform for oral delivery of drugs with poor bioavailability, Eur. J. Pharm. Biopharm. 73 (2009) 1-15; DOI: 10.1016/j.ejpb.2009.06.001.CrossrefGoogle Scholar

  • 60. A. Radomska-Soukharev, Stability of lipid excipients in solid lipid nanoparticles, Adv. Drug Del. Rev. 59 (2007) 411-418; DOI: 10.1016/j.addr.2007.04.004.CrossrefGoogle Scholar

  • 61. B. Heurtault, P. Saulnier, B. Pech, J.-E. Proust and J. P. Benoit, Physico-chemical stability of colloidal lipid particles, Biomaterials 24 (2003) 4283-4300; DOI: 10.1016/S0142-9612(03)00331-4.CrossrefGoogle Scholar

  • 62. B. Siekmann and K. Westesen, Thermoanalysis of recrystallization process of melt homogenised glyceride nanoparticles, Colloid Surface B 3 (1994) 159-175.CrossrefGoogle Scholar

  • 63. C. Freitas and R. H. Müller, Effect of light and temperature on zeta potential and physical stability of solid lipid nanoparticle (SLNTM) dispersions, Int. J. Pharm. 168 (1998) 221-229.Google Scholar

  • 64. C. Freitas and R. H. Müller, Stability determination of solid lipid nanoparticles (SLN) in aqueous dispersion after addition of electrolyte, J. Microencapsul. 16 (1999) 59-71; DOI: 10.1080/026520499289310.CrossrefGoogle Scholar

  • 65. C. Freitas and R. H. Müller, Correlation between long term stability of solid lipid nanoparticles (SLNTM) and crystallinity of lipid phase, Eur. J. Pharm. Biopharm. 47 (1999) 125-132.CrossrefGoogle Scholar

  • 66. K. Westesen and B. Siekmann, Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles, Int. J. Pharm. 151 (1997) 35-45; DOI: 10.1016/S0378-5173(97)04890-4.CrossrefGoogle Scholar

  • 67. R. H. Müller and S. Heinemann, Fat emulsions for parenteral nutrition. III. Lipofundin MCT/LCT regimens for total parenteral nutrition (TPN) with low electrolyte load, Int. J. Pharm. 101 (1994) 175-189; DOI: 10.1016/0378-5173(94)90213-5.CrossrefGoogle Scholar

  • 68. C. Freitas, J. Lucks and R. H. Müller, Effect of storage conditions on long-term stability of »solid lipid nanoparticles« (SLN) in aqueous dispersion, Eur. J. Pharm. Sci. 2 (1994) 117-194; DOI: 10.1016/0928-0987(94)90411-1.CrossrefGoogle Scholar

  • 69. B. Borgstrom, Importance of phospholipids, pancreatic phospholipase A2, and fatty acid for the digestion of dietary fat: in vitro experiments with the porcine enzymes, Gastroenterology 78 (1980) 954-962.Google Scholar

  • 70. R. O. Scow and T. Olivecrona, Effect of albumin on products formed from chylomicron triacylglycerol by lipoprotein lipase in vitro, Biochim. Biophys. Acta. 487 (1977) 472-486; DOI: 10.1016/0005-2760(77)90217-X.CrossrefGoogle Scholar

  • 71. R. Pandey, S. Sharma and G. K. Khuller, Oral solid lipid nanoparticle-based antitubercular chemotherapy, Tuberculosis 85 (2005) 415-420, DOI: 10.1016/j.tube.2005.08.009.CrossrefGoogle Scholar

  • 72. N. Zhang, Q. Ping, G. Huang, W. Xua, Y. Cheng and X. Han, Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin, Int. J. Pharm. 327 (2006) 153-159; DOI: 10.1016/j.ijpharm.2006.07.026.CrossrefGoogle Scholar

  • 73. M. D. Joshi and R. H. Müller, Lipid nanoparticles for parenteral delivery of actives, Eur. J. Pharm. Biopharm. 71 (2009) 161-172; DOI: 10.1016/j.ejpb.2008.09.003.CrossrefGoogle Scholar

  • 74. S. A. Wissing, O. Kayser and R. H. Müller, Solid lipid nanoparticles for parenteral drug delivery, Adv. Drug Del. Rev. 56 (2004) 1257-1272; DOI: 10.1016/j.addr.2003.12.002.CrossrefGoogle Scholar

  • 75. A. Fundarò, O, R. Cavalli, A. Bargoni, D. Vighetto, G. P. Zara and M. R. Gasco, Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue Distribution after i.v. administration to rats, Pharmacol. Res. 42 (2000) 337-343; DOI: 10.1006/phrs.2000.0695.CrossrefGoogle Scholar

  • 76. S. C. Yang, L. F. Lu, Y. Cai, J. B. Zhu, B. W. Liang and C. Z. Yanga, Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain, J. Control. Release 59 (1999) 299-307; DOI: 10.1016/S0168-3659(99)00007-3.CrossrefGoogle Scholar

  • 77. L. H. Reddy, R. K. Sharma, K. Chuttani, A. K. Mishra and R. S. R. Murthy, Influence of administration route on tumor uptake and biodistribution of etoposide loaded solid lipid nanoparticles in Dalton’s lymphoma tumor bearing mice, J. Control. Release 105 (2005) 185-198; DOI: 10.1016/j.jconrel.2005.02.028.CrossrefGoogle Scholar

  • 78. M. Schafer-Korting, W. Mehnert and H. C. Korting, Lipid nanoparticles for improved topical application of drugs for skin diseases, Adv. Drug Del. Rev. 59 (2007) 427-443; DOI: 10.1016/j.addr.2007.04.006.CrossrefGoogle Scholar

  • 79. V. Jenning, M. Schafer-Korting and S. Gohla, Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties, J. Control. Release 66 (2000) 115-126; DOI: 10.1016/S0168-3659(99)00007-3.CrossrefGoogle Scholar

  • 80. P. V. Pople and K. K. Singh, Development and evaluation of topical formulation containing solid lipid nanoparticles of vitamin A, AAPS PharmSciTech. 4 (2006) E1-E7; DOI: 10.1208/pt070491.CrossrefGoogle Scholar

  • 81. S. K. Jain, M. K. Chourasia, R. Masuriha, V. Soni, A. Jain, Nitin K. Jain and Y. Gupta, Solid lipid nanoparticles bearing flurbiprofen for transdermal delivery, Drug Del. 12 (2005) 207-215; DOI: 10.1080/10717540590952591.CrossrefGoogle Scholar

  • 82. A. J. Almeida and E. Souto, Solid lipid nanoparticles as a drug delivery system for peptides and proteins, Ad.v Drug Del. Rev. 59 (2007) 478-490; DOI: 10.1016/j.addr.2007.04.007.CrossrefGoogle Scholar

  • 83. J. Liu, T. Gong, H. Fu, C. Wang, X. Wang, Q. Chena, Q. Zhang, Q. Hea and Z. Zhang, Solid lipid nanoparticles for pulmonary delivery of insulin, Int. J. Pharm. 356 (2008) 333-344; DOI: 10.1016/j.ijpharm.2008.01.008.CrossrefGoogle Scholar

  • 84. J. Araujo, E. Gonzalez, M. A. Egea, M. L. Garcia and E. B. Souto, Nanomedicines for ocular NSAIDs: safety on drug delivery, Nanomedicine 5 (2009) 394-401; DOI: 10.1016/j.nano.2009.02.003.CrossrefGoogle Scholar

  • 85. M. I. Alam, S. Beg, A. Samad, S. Baboota, K. Kohli, J. Ali, A. Ahuja and M. Akbar, Strategy for effective brain drug delivery, Eur. J. Pharm. Sci. 40 (2010) 385-403; DOI: 10.1016/j.ejps.2010.05.003.CrossrefGoogle Scholar

  • 86. I. P. Kaur, R. Bhandari, S. Bhandari and V. Kakkar, Potential of solid lipid nanoparticles in brain targeting, J. Control. Release 127 (2008) 97-100; DOI: 10.1016/j.jconrel.2007.12.018.CrossrefGoogle Scholar

  • 87. A. Mistry, S. Stolnik and L. Illum, Nanoparticles for direct nose-to-brain delivery of drugs, Int. J. Pharm. 379 (2009) 146-157; DOI: 10.1016/j.ijpharm.2009.06.019.CrossrefGoogle Scholar

  • 88. I. Brasnjevic, H. W. M. Steinbusch, C. Schmitz and P. Martinez-Martinez, Delivery of peptide and protein drugs over the blood-brain barrier, Prog. Neurobiol. 87 (2009) 212-251; DOI: 10.1016/j.pneurobio.2008.12.002.CrossrefGoogle Scholar

  • 89. F. Chellat, Y. Merhi, A. Moreau and L. H. Yahia, Therapeutic potential of nanoparticulate systems for macrophage targeting, Biomaterials 26 (2005) 7260-7275; DOI: 10.1016/j.biomaterials.2005.05.044.CrossrefGoogle Scholar

  • 90. H. Chen, X. Chang, D. Du, W. Liu, J. Liu, T. Weng, Y. Yang, H. Xu and X. Yang, Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting, J. Control. Release 110 (2006) 296-306; DOI: 10.1016/j.jconrel.2005.09.052.CrossrefGoogle Scholar

  • 91. R. H. Müller, S. Maaben, H. Weyhers, F. Specht and J. S. Lucks, Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles, Int. J. Pharm. 138 (1996) 85-94; DOI: 10.1016/0378-5173(96)04539-5.CrossrefGoogle Scholar

  • 92. D. M. Radolfi, P. D. Marcato, R. A. Silva, G. Z. Justo and N. Duran, In vitro cytotoxicity assay of solid lipid nanoparticles in epithelial and dermal cells, J. Phys. Conf. Ser. 304 (2011) 1-4; DOI: 10.1088/1742-6596/304/1/012032.CrossrefGoogle Scholar

  • 93. H. Yuan, J. Miao, Y. Z. Du, J. You, F. Q. Hu and S. Zeng, Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells, Int. J. Pharm. 348 (2008) 137-145; DOI: 10.1016/j.ijpharm.2007.07.012.CrossrefGoogle Scholar

  • 94. J. C. Olivier, Drug transport to brain with targeted nanoparticles, NeuroRx. 1 ( 2005) 108-119; DOI: 10.1602/neurorx.2.1.108.CrossrefGoogle Scholar

  • 95. T. R. Pisanic II, J. D. Blackwell, V. I. Shubayev, R. R. Fiñones and S. Jin, Nanotoxicity of iron oxide nanoparticle internalization in growing neurons, Biomaterials 28 (2007) 2572-2581; DOI: 10.1016/j.biomaterials.2007.01.043.CrossrefGoogle Scholar

  • 96. H. C. Fischer, W. C. Chan, Nanotoxicity: the growing need for in vivo study, Curr. Opin. Biotechnol. 18 (2007) 565-571; DOI: 10.1016/j.copbio.2007.11.008.CrossrefGoogle Scholar

  • 97. Y. L. Hu and J. Q. Gao, Potential neurotoxicity of nanoparticles, Int. J. Pharm. 394 (2010) 115-121; DOI: 10.1016/j.ijpharm.2010.04.026.CrossrefGoogle Scholar

  • 98. K. Jores, W. Mehnert, M. Drechsler, H. Bunjes, C. Johann and K. Mäder, Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy, J. Control. Release 95 (2004) 217-227; DOI: 10.1016/j.jconrel.2003.11.012.CrossrefGoogle Scholar

  • 99. S. Chakraborty, B. Sahoo, I. Teraoka and R. A. Gross, Solution properties of starch nanoparticles in water and DMSO as studied by dynamic light scattering, Carbohydr Polym. 60 (2005) 475-481; DOI: 10.1016/j.carbpol.2005.03.011.CrossrefGoogle Scholar

  • 100. B. G. Zanetti-Ramos, M. B. Fritzen-Garcia, C. S. de Oliveira, A. A. Pasa, V. Soldi, R. Borsali and T. B. Creczynski-Pasa, Dynamic light scattering and atomic force microscopy techniques for size determination of polyurethane nanoparticles, Mater. Sci. Eng. C. Mater. Biol. App. 29 (2009) 638-640; DOI: 10.1016/j.msec.2008.10.040.CrossrefGoogle Scholar

  • 101. L. Dulog and T. Schauer, Field flow fractionation for particle size determination, Prog. Org. Coat. 28 (1996) 25-31; DOI: 10.1016/0300-9440(95)00584-6.CrossrefGoogle Scholar

  • 102. A. S. Dukhin, P. J. Goetz, X. Fang and P. Somasundaran, Monitoring nanoparticles in the presence of larger particles in liquids using acoustics and electron microscopy, J. Colloid Inter. Sci. 342 (2010) 18-25; DOI: 10.1016/j.jcis.2009.07.001.CrossrefGoogle Scholar

  • 103. V. Jenning, K. Mäder and S. H. Gohla, Solid lipid nanoparticles (SLN™) based on binary mixtures of liquid and solid lipids: 1H-NMR study, Int. J. Pharm. 205 (2000) 15-21; DOI: 10.1016/S0378-5173(00)00462-2.CrossrefGoogle Scholar

  • 104. A. Dubes, H. Parrot-Lopez, W. Abdelwahed, G. Degobert, H. Fessi, P. Shahgaldian and A. W. Coleman, Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins, Eur. J. Pharm. Biopharm. 55 (2003) 279-282; DOI: 10.1016/S0939-6411(03)00020-1.CrossrefGoogle Scholar

  • 105. M. Albrecht, V. Janke, S. Sievers, U. Siegner, D. Schulerb and U. Heyen, Scanning force microscopy study of biogenic nanoparticles for medical applications, J. Magn. Magn. Mater. 290-291 (2005) 269-271; DOI: 10.1016/j.jmmm.2004.11.206.CrossrefGoogle Scholar

  • 106. N. Škalko, J. Bouwstra, F. Spies, M. Stuart, P. M. Frederik and G. Gregoriadis, Morphological observations on liposomes bearing covalently bound protein: Studies with freeze-fracture and cryo electron microscopy and small angle X-ray scattering techniques, Biochim. Biophys. Acta 1370 (1998) 151-160; DOI: 10.1016/S0005-2736(97)00256-3.CrossrefGoogle Scholar

  • 107. K. Fowler, L. A. Bottomley and H. Schreier, Surface topography of phospholipid bilayer and vesicles (liposomes) by scanning tunnelling microscopy (STM), J. Control. Release 22 (1992) 283-292; DOI: 10.1016/0168-3659(92)90103-X.CrossrefGoogle Scholar

  • 108. O. Robach, C. Quiros, S. M. Valvidares, C. J. Walker and S. Ferrer, Structure and Pt magnetism of FePt nanoparticles investigated with X-ray diffraction, J. Magn. Magn. Mater. 264 (2003) 202-208; DOI: 10.1016/S0304-8853(03)00205-1.CrossrefGoogle Scholar

  • 109. M. A. Schubert, B. C. Schicke and C. C. Muller-Goymann, Thermal analysis of the crystallization and melting behaviour of lipid matrices and lipid nanoparticles containing high amounts of lecithin, Int. J. Pharm. 298 (2005) 242-254; DOI: 10.1016/j.ijpharm.2005.04.014.CrossrefGoogle Scholar

  • 110. S. A. Wissing and R. H. Müller, Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration, J. Control. Release 81 (2002) 225-233; DOI: 10.1016/S0168-3659(02)00056-1.CrossrefGoogle Scholar

  • 111. C. Song and S. Liu, A new healthy sunscreen system for human: Solid lipid nannoparticles as carrier for 3,4,5-trimethoxybenzoylchitin and the improvement by adding vitamin E, Int. J. Biol. Macromol. 36 (2005) 116-119; DOI: 10.1016/j.ijbiomac.2005.05.003.CrossrefGoogle Scholar

  • 112. J. Pardeike, A. Hommoss and R. H. Müller, Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products, Int. J. Pharm. 366 (2009) 170-184; DOI: 10.1016/j.ijpharm.2008.10.003.CrossrefGoogle Scholar

  • 113. S. A. Wissing and R. H. Müller, Cosmetic applications for solid lipid nanoparticles (SLN), Int. J. Pharm. 254 (2003) 65-68; DOI: 10.1016/S0378-5173(02)00684-1.CrossrefGoogle Scholar

  • 114. K. A. Shah, A. A. Date, M. D. Joshi and V. B. Patravale, Solid lipid nanoparticles (SLN) of tretinoin: Potential in topical delivery, Int. J. Pharm. 345 (2007) 163-171; DOI: 10.1016/j.ijpharm.2007.05.061.CrossrefGoogle Scholar

  • 115. J. Liu, W. Hu, H. Chen, Q. Ni, H. Xu and X. Yang, Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery, Int. J. Pharm. 328 (2007) 191-195; DOI: 10.1016/j.ijpharm.2006.08.007.CrossrefGoogle Scholar

  • 116. M. S. Korting, W. Mehnert and H. C. Korting, Lipid nanoparticles for improved topical application of drugs for skin diseases, Adv. Drug Del. Rev. 59 (2007) 427-443; DOI: 10.1016/j.addr.2007.04.006.CrossrefGoogle Scholar

  • 117. A. del Pozo-Rodrigueza, D. Delgadoa, M. A. Solinis, J. L. Pedraza, E. Echevarria, J. M. Rodriguez and A. R. Gascona, Solid lipid nanoparticles as potential tools for gene therapy: In vivo protein expression after intravenous administration, Int. J. Pharm. 385 (2010) 157-162; DOI: 10.1016/j.ijpharm.2009.10.020.CrossrefGoogle Scholar

  • 118. S. H. Choi, S. E. Jin, M. K. Lee, S. J. Lim, J. S. Park, B. G. Kim, W. S. Ahn and C. K. Kim, Novel cationic solid lipid nanoparticles enhanced p53 gene transfer to lung cancer cells, Eur. J. Pharm. Biopharm. 68 (2008) 545-554; DOI: 10.1016/j.ejpb.2007.07.011.CrossrefGoogle Scholar

  • 119. N. Pedersen, S. Hansen, A. V. Heydenreich, H. G. Kristensen and H. S. Poulsen, Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands, Eur. J. Pharm. Biopharm. 62 (2006) 155-162; DOI: 10.1016/j.ejpb.2005.09.003.CrossrefGoogle Scholar

  • 120. H. L. Wong, R. Bendayan, A. M. Rauth, Y. Li and X. Y. Wu, Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles, Adv. Drug Del. Rev. 59 (2007) 491-504; DOI: 10.1016/j.addr.2007.04.008.CrossrefGoogle Scholar

  • 121. H. L. Wong, R. Bendayan, A. M. Rauth and X. Y. Wu, Simultaneous delivery of doxorubicin and GG918 (Elacridar) by new Polymer-Lipid Hybrid Nanoparticles (PLN) for enhanced treatment of multidrug-resistant breast cancer, J. Control. Release 116 (2006) 275-284; DOI: 10.1016/j.jconrel.2006.09.007.CrossrefGoogle Scholar

  • 122. R. K. Subedi, K. W. Kang and H. K. Choi, Preparation and characterization of solid lipid nanoparticles loaded with doxorubicin, Eur. J. Pharm. Sci. 37 (2009) 508-513; DOI: 10.1016/j.ejps.2009.04.008.CrossrefGoogle Scholar

  • 123. B. Lu, S. B. Xiong, H. Yang, X. D. Yin and R. B. Chao, Solid lipid nanoparticles of mitoxantrone for local injection against breast cancer and its lymph node metastases, Eur. J. Pharm. Sci. 28 (2006) 86-95; DOI: 10.1016/j.ejps.2006.01.001.CrossrefGoogle Scholar

  • 124. N. Csaba, M. Garcia-Fuentes and M. J. Alonso, Nanoparticles for nasal vaccination, Adv. Drug Del. Rev. 61 (2009) 140-157; DOI: 10.1016/j.addr.2008.09.005.CrossrefGoogle Scholar

  • 125. S. M. Moghimi and J. Szebeni, Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties, Prog. Lipid Res. 42 (2003) 463-478; DOI: 10.1016/S0163-7827(03)00033-X.CrossrefGoogle Scholar

  • 126. Y. Wang and W. Wu, In situ evading of phagocytic uptake of stealth solid lipid nanoparticles by mouse peritoneal macrophages, Drug Deliv. 3 (2006) 189-192; DOI: 10.1080/10717540-500-315330.CrossrefGoogle Scholar

  • 127. M. R. Gasco, Lipid nanoparticles: perspectives and challenges, Adv. Drug Del. Rev. 59 (2007) 377-378; DOI: 10.1016/j.addr.2007.05.004.CrossrefGoogle Scholar

  • 128. A. J. Domb, Long acting injectable oxytetracycline-liposphere formulations, Int. J. Pharm. 124 (1995) 271-278; DOI: 10.1016/0378-5173(95)00098-4.CrossrefGoogle Scholar

  • 129. C. Schwarz and W. Mehnert, Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN), Int. J. Pharm. 157 (1997) 171-179; DOI: 10.1016/S0378-5173(97)00222-6.CrossrefGoogle Scholar

  • 130. K. Westesen, H. Bunjes and M. H. J. Koch, Physicochemical characterization of lipid nanoparticles and evaluation of their drug loading capacity and sustained release potential, J. Control. Release 48 (1997) 223-236; DOI: 10.1016/S0168-3659(97)00046-1.CrossrefGoogle Scholar

  • 131. K. Westesen, B. Siekmann and M. H. J. Koch, Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction, Int. J. Pharm. 93 (1993) 189-199; DOI: 10.1016/0378-5173(93)90177-H.CrossrefGoogle Scholar

  • 132. A. J. Almeida, S. Runge and R. H. Müller, Peptide-loaded solid lipid nanoparticles (SLN): influence of production parameters, Int. J. Pharm. 149 (1997) 255-265; DOI: 10.1016/S0378-5173(97)04885-0.CrossrefGoogle Scholar

  • 133. R. Cavalli, E. Peira, O. Caputo and M. R. Gasco, Solid lipid nanoparticles as carriers of hydrocortisone and progesterone complexes with a-cyclodextrins, Int. J. Pharm. 182 (1999) 59-69.Google Scholar

  • 134. H. Ali, A. B. Shirode, P. W. Sylvester and S. Nazzal, Preparation and in vitro antiproliferative effect of tocotrienol loaded lipid nanoparticles, Colloid Surface A 353 (2010) 43-51; DOI: 10.1016/j.colsurfa.2009.10.020.CrossrefGoogle Scholar

  • 135. R. Cavalli, S. Morel, M. R. Gasco, P. Chetoni and M. F. Saettone, Preparation and evaluation in vitro of colloidal lipospheres containing pilocarpine as ion pair, Int. J. Pharm. 117 (1995) 243-246; DOI: 10.1016/0378-5173(94)00339-7.CrossrefGoogle Scholar

  • 136. S. Morel, E. Terreno, E. Ugazio, S. Aime and M. R. Gasco, NMR relaxometric investigations of solid lipid nanoparticles (SLN) containing gadolinium(III) complexes, Eur. J. Pharm. Biopharm. 45 (1998) 157-163; DOI: 10.1016/S0939-6411(97)00107-0.CrossrefGoogle Scholar

  • 137. M. R. Gasco, R. Cavalli and M. E. Carlotti, Timolol in lipospheres, Pharmazie 47 (1992) 119-121.Google Scholar

  • 138. A. A. Attama and C. C. Müller-Goymann, Effect of beeswax modification on the lipid matrix and solid lipid nanoparticle crystallinity, Colloid Surface A 315 (2008) 189-195; DOI: 10.1016/j.colsurfa.2007.07.035.CrossrefGoogle Scholar

  • 139. S. Kheradmandia, E. Vasheghani-Farahani, M. Nosrati and F. Atyabi, Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax, Nanomedicine 6 (2010) 753-759; DOI: 10.1016/j.nano.2010.06.003.CrossrefGoogle Scholar

  • 140. B. D. Kim, K. Na and H. K. Choi, Preparation and characterization of solid lipid nanoparticles (SLN) made of cacao butter and curdlan, Eur. J. Pharm. Sci. 24 (2005) 199-205; DOI: 10.1016/j.ejps.2004.10.008.CrossrefGoogle Scholar

  • 141. C. Bocca, O. Caputo, R. Cavalli, L. Gabrial, A. Miglietta and M. R. Gasco, Phagocytic uptake of fluorescent stealth and non-stealth solid lipid nanoparticles, Int. J. Pharm. 175 (1998) 185-193; DOI: 10.1016/S0378-5173(98)00282-8.CrossrefGoogle Scholar

  • 142. T. M. Goppert and R. H. Müller, Protein adsorption patterns on poloxamer- and poloxamine-stabilized solid lipid nanoparticles (SLN), Eur. J. Pharm. Biopharm. 60 (2005) 361-372; DOI: 10.1016/j.ejpb.2005.02.006.CrossrefGoogle Scholar

  • 143. H. M. Redhead, S. S. Davis and L. Illum, Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation, J. Control. Release 70 (2001) 353-363.Google Scholar

  • 144. C. Olbrich, O. Kayser and R. H. Müller, Lipase degradation of Dynasan 114 and 116 solid lipid nanoparticles (SLN) - effect of surfactants, storage time and crystallinity, Int. J. Pharm. 237 (2002) 119-128; DOI: 10.1016/S0378-5173(02)00035-2.CrossrefGoogle Scholar

  • 145. C. C. Shen, W. L. Tseng and M. M. Hsieh, Selective enrichment of aminothiols using polysorbate 20-capped gold nanoparticles followed by capillary electrophoresis with laser-induced fluorescence, J. Chromatogr. A 1216 (2009) 288-293; DOI: 10.1016/j.chroma.2008.11.044.CrossrefGoogle Scholar

  • 146. L. D. Marzio, C. Marianecci, M. Petrone, F. Renaldi and M. Carafa, Novel pH-sensitive non-ionic surfactant vesicles: comparison between Tween 21 and Tween 20, Colloid Surface B 82 (2011) 18-24; DOI: 10.1016/j.colsurfb.2010.08.004.CrossrefGoogle Scholar

  • 147. L. H. Reddy, K. Vivek, N. Bakshi and R. S. R. Murthy, Tamoxifen citrate loaded solid lipid nanoparticles (SLN™): Preparation, characterization, in vitro drug release, and pharmacokinetic evaluation, Pharm. Dev. Technol. 11 (2006) 167-177; 2006, DOI: 10.1080/10837450600561265.CrossrefGoogle Scholar

  • 148. F. Q. Hu, H. Yuan, H. H. Zhang and M. Fang, Preparation of solid lipid nanoparticles with clobetasol propionate by a novel solvent diffusion method in aqueous system and physicochemical characterization, Int. J. Pharm. 239 (2002) 121-128; DOI: 10.1016/S0378-5173(02)00081-9. CrossrefGoogle Scholar

About the article

Published Online: 2013-01-15

Published in Print: 2012-12-01

Citation Information: Acta Pharmaceutica, Volume 62, Issue 4, Pages 433–472, ISSN (Online) 1846-9558, ISSN (Print) 1330-0075, DOI: https://doi.org/10.2478/v10007-012-0040-z.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Noraini Nordin, Swee Keong Yeap, Nur Rizi Zamberi, Nadiah Abu, Nurul Elyani Mohamad, Heshu Sulaiman Rahman, Chee Wun How, Mas Jaffri Masarudin, Rasedee Abdullah, and Noorjahan Banu Alitheen
PeerJ, 2018, Volume 6, Page e3916
Giuseppina Ioele, Lorena Tavano, Michele De Luca, Rita Muzzalupo, Annalisa Mancuso, and Gaetano Ragno
Future Medicinal Chemistry, 2017
Maraine Catarina Tadini, Ana Maria de Freitas Pinheiro, Daniel Blascke Carrão, Ana Luiza Scarano Aguillera Forte, Sofia Nikolaou, Anderson R.M. de Oliveira, Andresa Aparecida Berretta, and Franciane Marquele-Oliveira
Journal of Pharmaceutical and Biomedical Analysis, 2017, Volume 145, Page 576
Wei Wei, Xiaonan Lu, Zegao Wang, Bianca Pérez, Jingying Liu, Chengyu Wu, Mingdong Dong, Fengqin Feng, Huiling Mu, and Zheng Guo
Journal of Colloid and Interface Science, 2017, Volume 505, Page 392
Lamia Mouhid, Marta Corzo-Martínez, Carlos Torres, Luis Vázquez, Guillermo Reglero, Tiziana Fornari, and Ana Ramírez de Molina
Journal of Oncology, 2017, Volume 2017, Page 1
Harshita Raina, Simrandeep Kaur, and Anil B. Jindal
Journal of Drug Delivery Science and Technology, 2017, Volume 39, Page 180
Ponwanit Charoenputtakun, Boonnada Pamornpathomkul, Praneet Opanasopit, Theerasak Rojanarata, and Tanasait Ngawhirunpat
Biological & Pharmaceutical Bulletin, 2014, Volume 37, Number 7, Page 1139
Yousheng Zhou, Chunsheng He, Kuan Chen, Jieren Ni, Yu Cai, Xiaodi Guo, and Xiao Yu Wu
Journal of Controlled Release, 2016, Volume 243, Page 11
Elena Milanesi, Carlo Maj, Luisella Bocchio-Chiavetto, and Elisabetta Maffioletti
Drug Development Research, 2016, Volume 77, Number 8, Page 453
Parameswara Rao Vuddanda, Sanjay Singh, and Sitaram Velaga
Journal of Herbal Medicine, 2016, Volume 6, Number 4, Page 163
Iqbal Ahmad, Mohammed Anwar, Sohail Akhter, Pallavi Thakur, Raman Chawla, Rakesh Kumar Sharma, Asgar Ali, and Farhan Jalees Ahmad
Journal of Pharmaceutical Innovation, 2016, Volume 11, Number 4, Page 308
Ailar Tupal, Mehdi Sabzichi, Fatemeh Ramezani, Maryam Kouhsoltani, and Hamed Hamishehkar
Journal of Microencapsulation, 2016, Volume 33, Number 4, Page 372
Neha Atulkumar Singh, Abul Kalam Azad Mandal, and Zaved Ahmed Khan
Nutrition Journal, 2015, Volume 15, Number 1
Md. Nuruzzaman, Mohammad Mahmudur Rahman, Yanju Liu, and Ravi Naidu
Journal of Agricultural and Food Chemistry, 2016, Volume 64, Number 7, Page 1447
Lili Sun, Kun Wan, Xueyuan Hu, Yonghong Zhang, Zijun Yan, Jiao Feng, and Jingqing Zhang
Nanotechnology, 2016, Volume 27, Number 8, Page 085102
Abhijeet D. Kulkarni, Yogesh H. Vanjari, Karan H. Sancheti, Harun M. Patel, Veena S. Belgamwar, Sanjay J. Surana, and Chandrakantsing V. Pardeshi
Artificial Cells, Nanomedicine, and Biotechnology, 2016, Volume 44, Number 7, Page 1615
Jafar Ezzati Nazhad Dolatabadi and Yadollah Omidi
TrAC Trends in Analytical Chemistry, 2016, Volume 77, Page 100
Rajat Sandhir, Aarti Yadav, Aditya Sunkaria, and Nitin Singhal
Neurochemistry International, 2015, Volume 89, Page 209
Gye Hwa Shin, Jun Tae Kim, and Hyun Jin Park
Trends in Food Science & Technology, 2015, Volume 46, Number 1, Page 144
Abhijeet D. Kulkarni, Yogesh H. Vanjari, Karan H. Sancheti, Veena S. Belgamwar, Sanjay J. Surana, and Chandrakantsing V. Pardeshi
Journal of Drug Targeting, 2015, Volume 23, Number 9, Page 775
Rahul S. Kalhapure, Nadia Suleman, Chunderika Mocktar, Nasreen Seedat, and Thirumala Govender
Journal of Pharmaceutical Sciences, 2015, Volume 104, Number 3, Page 872
T. Geetha, Meenakshi Kapila, Om Prakash, Parneet Kaur Deol, Vandita Kakkar, and Indu Pal Kaur
Journal of Drug Targeting, 2015, Volume 23, Number 2, Page 159
Jayaganesh V. Natarajan, Chandra Nugraha, Xu Wen Ng, and Subbu Venkatraman
Journal of Controlled Release, 2014, Volume 193, Page 122
Maria Grazia Sarpietro, Maria Lorena Accolla, Giovanni Puglisi, Francesco Castelli, and Lucia Montenegro
International Journal of Pharmaceutics, 2014, Volume 471, Number 1-2, Page 69
Melanie Kah and Thilo Hofmann
Environment International, 2014, Volume 63, Page 224
Antonio Leonardi, Claudio Bucolo, Giovanni Luca Romano, Chiara Bianca Maria Platania, Filippo Drago, Giovanni Puglisi, and Rosario Pignatello
International Journal of Pharmaceutics, 2014, Volume 470, Number 1-2, Page 133
Gabriele A. Rolla, Mauro Botta, Lorenzo Tei, Claudia Cabella, Simona Ghiani, Chiara Brioschi, and Alessandro Maiocchi
Chemistry - A European Journal, 2013, Volume 19, Number 34, Page 11189
Jin Huk Choi and Maria A. Croyle
BioDrugs, 2013, Volume 27, Number 6, Page 565
Chandrakantsing V. Pardeshi, Veena S. Belgamwar, Avinash R. Tekade, and Sanjay J. Surana
Journal of Materials Science: Materials in Medicine, 2013, Volume 24, Number 9, Page 2101

Comments (0)

Please log in or register to comment.
Log in