Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year

IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
See all formats and pricing
More options …
Volume 63, Issue 3


Cyclodextrin based nanosponges for pharmaceutical use: A review

Gursalkar Tejashri / Bajaj Amrita / Jain Darshana
Published Online: 2013-10-22 | DOI: https://doi.org/10.2478/acph-2013-0021


Nanosponges are a novel class of hyper-crosslinked polymer based colloidal structures consisting of solid nanoparticles with colloidal sizes and nanosized cavities. These nano-sized colloidal carriers have been recently developed and proposed for drug delivery, since their use can solubilize poorly water-soluble drugs and provide prolonged release as well as improve a drug’s bioavailability by modifying the pharmacokinetic parameters of actives. Development of nanosponges as drug delivery systems, with special reference to cyclodextrin based nanosponges, is presented in this article. In the current review, attempts have been made to illustrate the features of cyclodextrin based nanosponges and their applications in pharmaceutical formulations. Special emphasis has been placed on discussing the methods of preparation, characterization techniques and applications of these novel drug delivery carriers for therapeutic purposes. Nanosponges can be referred to as solid porous particles having a capacity to load drugs and other actives into their nanocavity; they can be formulated as oral, parenteral, topical or inhalation dosage forms. Nanosponges offer high drug loading compared to other nanocarriers and are thus suitable for solving issues related to stability, solubility and delayed release of actives. Controlled release of the loaded actives and solubility enhancement of poorly water-soluble drugs are major advantages of nanosponge drug delivery systems.

Keywords: nanosponges; solubility enhancement; cyclodextrin

  • 1. L. Guo, G. Gao, X. Liu and F. Liu, Preparation and characterization of TiO2 nanosponge, Mater. Chem. Phys. 111 (2008) 322-325; DOI: 10.1186/1556-276X-6-551.CrossrefGoogle Scholar

  • 2. D. Farrell, S. Limaye and S. Subramanian, Silicon Nanosponge Particles, U.S. Pat 0,251,561A1, 9 Nov 2006.Google Scholar

  • 3. V. Dakankov, M. Llyin, M. Tsyurupa, G. Timofeeva and L. Dubronina, From a dissolved polystyrene coil to intramolecularly hyper cross linked nanosponges, Macromolecules 29 (1998) 8398-8403; DOI: 10.1021/ma951673i.CrossrefGoogle Scholar

  • 4. S. Swaminathan, L. Pastero, L. Serpe, F. Trotta, P. Vavia, D. Aquilano, M. Trotta, G. Zara and R. Cavalli, Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity, Eur. J. Pharm. Biopharm. 74 (2010) 193-201; DOI: 10.1016/ j.ejpb.2009.11.003.CrossrefGoogle Scholar

  • 5. F. Melani, P. Mura, M. Adamo, F. Maestrelli, P. Gratteri and C. Bonaccini, New docking CFF91 parameters specific for cyclodextrin inclusion complexes, Chem. Phys. Lett. 370 (2003) 280-292; DOI: 10.1016/S0009-2614(03)00126-X.CrossrefGoogle Scholar

  • 6. P. Couvreur and C. Vauthier, Nanotechnology: intelligent design to treat complex disease, Pharm. Res. 23 (2006) 1417-1450; DOI: 10.1007/s11095-006-0284-8.CrossrefGoogle Scholar

  • 7. C. Zhang, N. Awasthi, M. A. Schwarz, S. Hinz and R. E. Schwarz, Superior antitumor activity of nanoparticle albumin-bound paclitaxel in experimental gastric cancer, PLoS One. 8 (2013) e58037; DOI: 10.1371/journal.pone.0058037.CrossrefGoogle Scholar

  • 8. Y. Fukumori and H. Ichikawa, Nanoparticles for cancer therapy and diagnosis, Adv. PowderTechnol. 17 (2006) 1-28; DOI: 10.1163/156855206775123494.CrossrefGoogle Scholar

  • 9. M. Morishita and N. Peppas, Is the oral route possible for peptide and protein drug delivery, Drug Discov. Today 11 (2006) 905-910; DOI: 10.1007/s11095-006-0284-8.CrossrefGoogle Scholar

  • 10. H. Cohen, R. Levy, J. Gao, I. Fishbein, V. Kousaev, S. Sosnowski, S. Slomkowski and G. Golomb, Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles, Gene Ther. 7 (2000) 1896-1905; DOI: 10.1038/sj.gt.3301318.CrossrefGoogle Scholar

  • 11. L. Grislain, P. Couvreur, V. Lenaerts, M. Roland, D. Deprez-Decampeneere and P. Speiser, Pharmacokinetics and distribution of a biodegradable drug-carrier, Int. J. Pharm. 15 (1983) 335-345; DOI: 10.1016/0378-5173(83)90166-7.CrossrefGoogle Scholar

  • 12. L. Illum, S. S. Davis, C. G. Wilson, N. W. Thomas, M. Frier and J. G. Hardy, Blood clearance and organ deposition of intravenously administered colloidal particles, The effects of particle size, nature and shape, Int. J. Pharm. 12 (1982) 135-146; DOI: 10.1016/0378-5173(82)90113-2.CrossrefGoogle Scholar

  • 13. P. Couvreur, B. Kante, V. Lenaerts, V. Scailteur, M. Roland and P. Speiser, Tissue distribution of antitumor drugs associated with polyalkylcyanoacrylate nanoparticles, J. Pharm. Sci. 69 (1980) 199-202; DOI: 10.1002/jps.2600690222.CrossrefGoogle Scholar

  • 14. J. Kreuter, Nanoparticles, in Encyclopedia of Pharmaceutical Technology (Ed. J. Swarbrick and J. C. Boylan), Marcel Dekker In., New York 1994, pp.165-190.Google Scholar

  • 15. J. Xing, D. Zhang and T. Tan, Studies on the oridonin-loaded poly(D,L-lactic acid) nanoparticles in vitro and in vivo, Int. J. Biol. Macromol. 40 (2007) 153-158; DOI: 10.1016/j.ijbiomac.2006. 07.001.CrossrefGoogle Scholar

  • 16. E. Garcia-Garcia, K. Andrieux, S. Gil and P. Couvreur, Colloidal carriers and blood-brain barrier (BBB) translocation: a way to deliver drugs to the brain, Int. J. Pharm. 298 (2005) 274-292; DOI: 10.1016/j.ijpharm.2005.03.031.CrossrefGoogle Scholar

  • 17. S. Subramanian, A. Singireddy, K. Krishnamoorthy and M. Rajappan, Nanosponges: A Novel Class of Drug Delivery System - Review, J. Pharm. Pharmac. Sci. 15 (2012) 103-111.Google Scholar

  • 18. A. Nokhodchi, M. Jelvehgari, M. Reza Siahi and M. Reza Mozafar, Factors affecting the morphology of benzoyl peroxide microsponges, Micron 38 (2007) 834-840, DOI: 10.1016/j.micron. 2007.06.012.CrossrefGoogle Scholar

  • 19. F. Trotta and R. Cavalli, Characterization and application of new hyper-cross-linked cyclodextrins, Compos. Interfaces 16 (2009) 39-48, DOI: 10.1163/156855408X379388.CrossrefGoogle Scholar

  • 20. F. Trotta, R. Cavalli, V. Tumiatti, O. Zerbinati, C. Roggero and R. Vallero, Ultrasound AssistedSynthesis of Cyclodextrin Based Nanosponges, EP Pat 1786841A1, 23May, 2007.Google Scholar

  • 21. S. Eki, T. Lei, L. Jingquan, J. Zhongfan, B. Cyrille and P. D. Thomas, Biodegradable star polymers functionalized with b-cyclodextrin inclusion complexes, Biomacromolecules, 10 (2009) 2699-2707; DOI: 10.1021/bm900646g.CrossrefGoogle Scholar

  • 22. S. Swaminathan, R. Cavalli, F. Trotta, P. Ferruti, E. Ranucci, I. Gerges, A. Manfredi, D. Marinotto and P. Vavia, In vitro release modulation and conformational stabilization of a model protein using swellable polyamidoamine nanosponges of b-cyclodextrin, J. Incl. Phenom. Macrocycl. Chem. 68 (2010) 183-191; DOI: 10.1007/s10847-010-9765-9.CrossrefGoogle Scholar

  • 23. A. Vyas, S. Saraf and S. Saraf, Cyclodextrin based novel drug delivery systems, J. Incl. Phenom. Macrocycl. Chem. 62 (2008) 23-42; DOI: 10.1007/s10847-008-9456-y.CrossrefGoogle Scholar

  • 24. T. Girek and W. Ciesielski, Polymerization of b-cyclodextrin with maleic anhydride along with thermogravimetric study of polymers, J. Incl. Phenom. Macrocycl. Chem. (2010) 1-7; DOI: 10. 1007/s10847-010-9778-4.CrossrefGoogle Scholar

  • 25. D. Li and M. Ma, Nanosponges: From inclusion chemistry to water purifying technology, Chem.\ Sci. Technol. (1999) 26-28.Google Scholar

  • 26. C. Rajeswari, A. Alka, A. Javed and R. Khar, Cyclodextrins in drug delivery: an update review, AAPS PharmSciTech. 6 (2005) E329-E357; DOI: 10.1208/pt060243.CrossrefGoogle Scholar

  • 27. A. Modi and P. Tayade, Comparative solubility enhancement profile of valdecoxib with different solubilization approaches, Ind. J. Pharm. Sci. 69 (2007) 427-430; DOI: 10.4103/0250-474X. 33156.CrossrefGoogle Scholar

  • 28. R. Cavalli, F. Trotta and W. Tumiatti, Cyclodextrin-based nanosponges for drug delivery, J. Incl. Phenom. Macrocycl. Chem. 56 (2006) 209-213; DOI: 10.1007/s10847-006-9085-2.CrossrefGoogle Scholar

  • 29. F. Trotta, V. Tumiatti, R. Cavalli, C. Roggero, B. Mognetti and G. Berta, Cyclodextrin-based Nanospongesas a Vehicle for Antitumoral Drugs, WO 2009/003656 A1; 2009.Google Scholar

  • 30. F. Trotta and T. Wander, Cross-linked Polymers Based on Cyclodextrins for Removing PollutingAgents, WO 2003/085002, US20050154198 A1, 14 July. 2005.Google Scholar

  • 31. S. Swaminathan, P. Vavia, F. Trotta and S. Torne, Formulation of beta-cyclodextrin based nanosponges of Itraconazole, J. Incl. Phenom. Macrocycl. Chem. 57 (2007) 89-94; DOI: 10.1007/s10847-006-9216-9.CrossrefGoogle Scholar

  • 32. A. Mele, F. Castiglione, L. Malpezzi, F. Ganazzoli, G. Raffaini, F. Trotta, B. Rossi, A. Fontana and G. Giunchi, HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in b-CD nanosponges, J. Incl. Phenom. Macrocycl. Chem. 69 (2011) 403-409; DOI: 10.1007/ s10847-010-9772-x.CrossrefGoogle Scholar

  • 33. S. Swaminathan, P. Vavia, F. Trotta, R. Cavalli, P. Ferruti, E. Ranucci and I. Gerges, Release modulation and conformational stabilization of a model protein by use of swellable nanosponges of b-cyclodextrin, First European Cyclodextrin Conference, Aalborg, Denmark 2009.Google Scholar

  • 34. S. Torne, K. Ansari, P. Vavia, F. Trotta and R. Cavalli, Enhanced oral bioavailability after administration of paclitaxel-loaded nanosponges, Drug Deliv. 17 (2010) 419-425; DOI: 10.3109/ 10717541003777233.CrossrefGoogle Scholar

  • 35. K. Ansari, P. Vavia, F. Trotta and R. Cavalli, Cyclodextrin-based nanosponges for delivery of resveratrol: in vitro characterisation, stability, cytotoxicity and permeation study, AAPS PharmSciTech, 12 (2011) 279-286; DOI: 10.1208/s12249-011-9584-3.CrossrefGoogle Scholar

  • 36. E. Patel and R. Oswal, Nanosponge and micro sponges: a novel drug delivery system, Int. J. Res. Pharm. Chem. 2 (2012) 237-244.Google Scholar

  • 37. T. Loftsson and M. Brewster, Pharmaceutical applications of cyclodextrins: drug solubilization and stabilization, J. Pharm. Pharmacol. 85 (1996) 1017-1025; DOI: 10.1021/js950534b.CrossrefGoogle Scholar

  • 38. A. Radi and S. Eissa, Electrochemical study of indapamide and its complexation with b-cyclodextrin, J. Incl. Phenom. Macrocycl. Chem. 71 (2011) 95-102; DOI: 10.1007/s10847-010.9906-1.CrossrefGoogle Scholar

  • 39. H. Bricout, F. Hapiot, A. Ponchel, E. Monflier and S. Tilloy, Chemically modified cyclodextrins: an attractive class of supramolecular hosts for the development of aqueous biphasic catalytic processes, Sustainability 1 (2009) 924-945; DOI: 10.3390/su1040924.CrossrefGoogle Scholar

  • 40. H. Dodziuk, Molecules with Holes - Cyclodextrins, in Cyclodextrins and Their Complexes (Ed. H. Dodziuk), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 2006, pp. 1-30.Google Scholar

  • 41. D. Li and M. Ma, Nanosponges for water purification, Clean Prod. Process. 2 (2000) 112-16; DOI: 10.1007/s100980000061.CrossrefGoogle Scholar

  • 42. E. Bilensoy and A. Atilla, Cyclodextrin-based Nanomaterials in Pharmaceutical Field, in PharmaceuticalSciences Encyclopedia: Drug Discovery, Development, and Manufacturing, John Wiley & Sons Inc. Publishers 2010; DOI: 10.1002/9780470259818.ch31.CrossrefGoogle Scholar

  • 43. R. Lala, A. Thorat and C. Gargote, Current trends in b-cyclodextrin based drug delivery systems, Int. J. Res. Ayur. Pharm, 2 (2011) 1520-1526.Google Scholar

  • 44. B. Mamba, R. Krause, T. Malefetse and S. Sithhole, Cyclodextrin nanosponges in the removal of organic matter to produce water for power generation, Water SA, 34 (2008) 657-660.Google Scholar

  • 45. B. Mamba, R. Krause, T. Malefetse, S. Mhlanga, S. Sithhole, K. Salipira and E. Nxumalo, Removal of geosmin and 2-methylisoborneol (2-MIB) in water from Zuikerbosch water treatment plant (Rand Water) using b-cyclodextrin polyurethane, Water SA, 32 (2007) 223-228.Google Scholar

  • 46. S. Tang, L. Kong, J. Ou, Y. Liu, X. Li and H. Zou, Application of cross-linked b-cyclodextrin polymer for adsorption of aromatic amino acid, J. Mol. Recogn. Macrocyclic Chem. 19 (2006) 39-48; DOI: 10.1002/jmr.756.CrossrefGoogle Scholar

  • 47. F. Trotta, R. Cavalli, S. Swaminathan, C. Sarzanini and P. Vavia, Novel functionalized nanosponges: synthesis, characterization. Safety assessment, cytotoxicity testing and interaction studies. Proceedings of the 14th International Cyclodextrin Symposium, Kyoto 2008, pp. 338-342.Google Scholar

  • 48. G. Yurtdas, M. Demirel and L. Genc, Inclusion complexes of fluconazole with b-cyclodextrin: physicochemical characterization and in vitro evaluation of its formulation, J. Incl. Phenom. Macrocycl. Chem. 70 (2011) 429-435; DOI: 10.1007/s10847-010-9908-z.CrossrefGoogle Scholar

  • 49. A. Rasheed, Cyclodextrins as drug carrier molecule: a review, Sci. Pharmac. 76 (2008) 567-598; DOI: 10.3797/scipharm.0808-05.CrossrefGoogle Scholar

  • 50. P. Sinko, Martin’s Physical Pharmacy and Pharmaceutical Sciences, 5th ed., Lippincott Williams & Williams Publishers, Philadelphia 2006, p.466.Google Scholar

  • 51. T. Govender, S. Stolnik, M. Garnett, L. Illum and S. Davis, PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug, J. Control. Release 57 (1999) 171-185; DOI: 10.1016/S0168-3659(98)00116-3.CrossrefGoogle Scholar

  • 52. S. Galindo-Rodriguez, E. Allémann, H. Fessi and E. Doelker, Physicochemical parameters associated with nanoparticle formation in the salting-out, emulsification-diffusion and nanoprecipitation methods, Pharm. Res. 21 (2004) 1428-1439; DOI: 10.1023/B:PHAM.0000036917.75634.be.CrossrefGoogle Scholar

  • 53. M. Leroueil-Le Verger, L. Fluckiger, Y. Kim, M. Hoffman and P. Maincent, Preparation and characterization of nanoparticles containing an antihypertensive agent, Eur. J. Pharm. Biopharm. 46 (1998) 137-143; DOI: 10.1016/S0939-6411(98)00015-0.CrossrefGoogle Scholar

  • 54. N. Santos-Magalhães, H. Fessi, F. Puisieux, S. Benita and M. Seiller, An in-vitro release kinetic examination and comparative evaluation between submicron emulsion and polylactic acid nanocapsules of clofibride, J. Microencapsul. 12 (1995) 195-205; DOI: 10.3109/02652049509015290.CrossrefGoogle Scholar

  • 55. A. Layre, R. Gref, J. Richard, D. Requier, H. Chacun, M. Appel, A. Domb and P. Couvreur, Nanoencapsulation of a crystalline drug, Int. J. Pharm. 298 (2005) 323-327; DOI: 10.1016/j. ijpharm.2005.02.039.CrossrefGoogle Scholar

  • 56. D. Lemoine, C. Francois, F. Kedzierewicz, V. Preat, M. Hoffman and P. Maincent, Stability study of nanoparticles of poly(b-caprolactone), poly(D,L-lactide) and poly(D,L-lactideco-glycolide), Biomaterials 17 (1996) 2191-2197. DOI: 10.1016/0142-9612(96)00049-X.CrossrefGoogle Scholar

  • 57. Y. Jeong, Y. Shim, C. Kim, G. Lim, K. Choi and C. Yoon, Effect of cryoprotectants on the reconstitution properties of surfactant-free nanoparticles of poly (D,L-lactide-co-glycolide), J. Microencapsul.22 (2005) 593-601; DOI: 10.1080/02652040500162659.CrossrefGoogle Scholar

  • 58. H. Redhead, S. Davis and L. Illum, Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation, J. Control. Release, 70 (2001) 353-363; DOI: 10.1016/S0168-3659(00)00367-9.CrossrefGoogle Scholar

  • 59. M. Bivas-Benita, S. Romeijn, H. Junginger and G. Borchard, PLGA-PEI nanoparticles for gene delivery to pulmonary epithelium, Eur. J. Pharm. Biopharm. 58 (2004) 1-6; DOI: 10.1016/j.ejpb. 2004.03.008.CrossrefGoogle Scholar

  • 60. R. Pecora, Dynamic light scattering measurement of nanometer particles in liquids, J. NanoparticleRes. 2 (2000) 123-131; DOI: 10.1023/A:1010067107182.CrossrefGoogle Scholar

  • 61. M. Santander-Ortega, A. Jódar-Reyes, N. Csabac, D. Bastos-González and J. Ortega-Vinuesa, Colloidal stability of Pluronic F68-coated PLGA nanoparticles: a variety of stabilisation mechanisms, J. Colloid. Interf. Sci. 302 (2006) 522-529; DOI: 10.1016/j.jcis.2006.07.031.CrossrefGoogle Scholar

  • 62. Y. Ishikawa, Y. Katoh and H. Ohshima, Colloidal stability of aqueous polymeric dispersions: effect of pH and salt concentration, Colloid Surf. B 42 (2005) 53-58; DOI: 10.1016/j.colsurfb.2005. 01.006.CrossrefGoogle Scholar

  • 63. J. Shar, T. Obey and T. Cosgrove, Adsorption studies of polyether’s- Part1: Adsorption onto hydrophobic surfaces, Colloid Surf A: Physicochemical and Engineering Aspects 136 (1998) 21-33, DOI: 10.1016/S0927-7757(97)00182-9.CrossrefGoogle Scholar

  • 64. E. Leo, B. Brina, F. Forni and M. Vandelli, In vitro evaluation of PLA nanoparticles containing a lipophilic drug in water-soluble or insoluble form, Int. J. Pharm. 278 (2004) 133-141, DOI: 10. 1016/j.ijpharm.2004.03.002.CrossrefGoogle Scholar

  • 65. U. Bilati, E. Allemann and E. Doelker, Development of a nanoprecipitation method intended for the entrapment of hydrophilic drugs into nanoparticles, Eur. J. Pharm. Sci. 24 (2005) 67-75; DOI: 10.1016/j.ejps.2004.09.011.CrossrefGoogle Scholar

  • 66. M. Bivas-Benita, S. Romeijn, H. Junginger and G. Borchard, PLGA-PEI nanoparticles for gene delivery to pulmonary epithelium, Eur. J. Pharm. Biopharm. 58 (2004) 1-6; DOI: 10.1016/j.ejpb. 2004.03.008.CrossrefGoogle Scholar

  • 67. H. Fessi, F. Puisieux, J. Devissaguet, N. Ammoury and S. Benita, Nanocapsule formation by interfacial polymer deposition following solvent displacement, Int. J. Pharm. 55 (1989) R1-R4; DOI: 10.1016/0378-5173(89)90281-0.CrossrefGoogle Scholar

  • 68. M. Chorny, I. Fishbein, H. D. Danenberg and G. Golomb, Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics, J. Control. Release 83 (2002) 389-400; DOI: 10.1016/S0168-3659(02)00211-0.CrossrefGoogle Scholar

  • 69. V. Mosqueira, P. Legrand, H. Pinto-Alphandary, F. Puisieux and G. Barratt, Poly (D,L-lactide) nanocapsules prepared by a solvent displacement process: influence of the composition on physicochemical and structural properties, J. Pharm. Sci. 89 (2000) 614-626; DOI: 10.1002/(SICI) 1520-6017(200005)89:5<614::AID-JPS7>3.0.CO;2-7.CrossrefGoogle Scholar

  • 70. J. Ren, H. Hong, J. Song and T. Ren, Particle size and distribution of biodegradable poly-D,L- -lactide-co-poly(ethylene glycol) block polymer nanoparticles prepared by nanoprecipitation, J. Appl. Polym. Sci. 98 (2005) 1884-1890; DOI: 10.1002/app.22070.CrossrefGoogle Scholar

  • 71. M. Teixeira, M. Alonso, M. Pinto and C. Barbosa, Development and characterization of PLGA nanospheres and nanocapsules containing xanthone and 3methoxyxanthone, Eur. J. Pharm. Biopharm. 59 (2005) 491-500; DOI: 10.1016/j.ejpb.2004.09.002.Google Scholar

  • 72. M. Tobìo, R. Gref, A. Sanchez, R. Langer and M. Alonso, Stealth PLA-PEG nanoparticles as protein carriers for nasal administration, Pharm. Res. 15 (1998) 276-279; DOI: 10.1023/A:1011922 819926.CrossrefGoogle Scholar

  • 73. H. Brittain, D. Bogdanowich, J. DeVincentis, G. Lewen and A.Newman, Physical characterization of pharmaceutical solids, Pharm. Res. 8 (1991) 963-973. DOI: 10.1023/A:1015888520352.CrossrefGoogle Scholar

  • 74. M. Hombreiro-Perez, J. Siepmann, C. Zinutti, A. Lamprecht, N. Ubrich, M. Hoffman, R. Bodmeier and P. Maincent, Non-degradable microparticles containing a hydrophilic and/or a lipophilic drug: preparation, characterization and drug release modeling, J. Control. Release 88 (2003) 413-428; DOI: 10.1016/S0168-3659(03)00030-0.CrossrefGoogle Scholar

  • 75. M. Guyot and F. Fawaz, Nifedipine loaded-polymeric microspheres: preparation and physical characteristics, Int. J. Pharm. 175 (1998) 61-74; DOI: 10.1016/S0378-5173(98)00253-1.CrossrefGoogle Scholar

  • 76. Y. Jeong, Y. Shim, K. Song, Y. Park, H. Ryu and J. Nah, Testosterone encapsulated surfactant-free nanoparticles of poly(D,L-lactide-co-glycolide): preparation and release behavior, Bull. KoreanChem. Soc. 23 (2002) 1579-1584.Google Scholar

  • 77. R. Suryanarayanan, X-Ray Powder Diffractometry, in Physical Characterization of Pharmaceutical Solids, Vol. 70 (Ed. H. G. Brittain), Marcel Dekker Inc., New York 1995, pp.187-221.Google Scholar

  • 78. J. Alongi, M. Skovi, A. Frache and F. Trotta, Novel flame retardants containing cyclodextrin nanosponges and phosphorus compounds to enhance EVA combustion properties, Polym. Degrad. Stabil. 95 (2010) 2093-2100; DOI: 10.1016/j.polymdegradstab.2010.06.030.CrossrefGoogle Scholar

  • 79. G. Gilardi, F. Trotta, R. Cavalli, P. Ferruti, E. Ranucci, G. Di Nardo, C. Roggero and V. Tumiatti, Cyclodextrin Nanosponges as Carrier for Biocatalysts, and in the Delivery and Release of Enzymes, Proteins,Vaccines and Antibodies, WO2009149883 A1, 17 Dec.2009.Google Scholar

  • 80. S. Renuka, B. W. Roderick and P. Kamla, Evaluation of the kinetics and mechanism of drug release from Econazole Nitrate nanosponge loaded carbopol hydrogel, Ind. J. Pharm. Edu. Res. 45 (2011) 25-31.Google Scholar

  • 81. S. Renuka and P. Kamla, Polymeric nanosponges as an alternative carrier for improved retention of econazole nitrate onto the skin through topical hydrogel formulation, Pharm. Dev. Technol.16 (2011) 367-376; DOI: 10.3109/10837451003739289.CrossrefGoogle Scholar

  • 82. S. Baboota, R. Khanna, S. Agarwal, J. Ali and A. Ahuja, Cyclodextrins in Drug Delivery Systems: An update, Available from Pharma. info. net., 2003, accessed on 13/01/2011.Google Scholar

  • 83. V. N. Wong, G. Fernando, A. R. Wagner, J. Zhang, G. R. Kinsel, S. Zauscher and D. J. Dyer, Separation of peptides with polyionic nanosponges for MALDIMS analysis, Langmuir 25 (2009) 1459-1465; DOI: 10.1021/la802723r.CrossrefGoogle Scholar

  • 84. A. Jenny, P. Merima, F. Alberto and T. Francesco, Role of b-cyclodextrin nanosponges in polypropylene photooxidation, Carbohyd. Polym. 86 (2011) 127-135; DOI: 10.1016/j.carbpol.2011.04. 022.CrossrefGoogle Scholar

  • 85. K. William, S. Benjamin and H. Eva, Synthesis and Characterization of Nanosponges for Drug Deliveryand Cancer Treatment, www.Vanderbilt.edu, accessed on 20.12.2011.Google Scholar

  • 86. L. Wenting, Y. Cheng, N. Masaki, F. Gaku, M. Tadashi, M. Andrea, C. Franca, C. Fabrizio, T. Francesco and I. Yoshihisa, Cyclodextrin nanosponge-sensitized enantiodifferentiating photoisomerization of cyclooctene and 1,3-cyclooctadiene, Beilstein J. Org. Chem. 8 (2012) 1305-1311; DOI: 10.3762/bjoc.8.149. CrossrefGoogle Scholar

About the article

Published Online: 2013-10-22

Published in Print: 2013-09-01

Citation Information: Acta Pharmaceutica, Volume 63, Issue 3, Pages 335–358, ISSN (Online) 1846-9558, ISSN (Print) 1330-0075, DOI: https://doi.org/10.2478/acph-2013-0021.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

R. Pushpalatha, S. Selvamuthukumar, and D. Kilimozhi
Chemical Engineering Communications, 2018, Page 1
Mai Mahmoud Gabr, Sana Mohamed Mortada, and Marwa Ahmed Sallam
European Journal of Pharmaceutical Sciences, 2017
Geetika Wadhwa, Sunil Kumar, Lovely Chhabra, Sheefali Mahant, and Rekha Rao
Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017
Vikramjeet Singh, Jianghui Xu, Li Wu, Botao Liu, Tao Guo, Zhen Guo, Peter York, Ruxandra Gref, and Jiwen Zhang
RSC Adv., 2017, Volume 7, Number 38, Page 23759
Vito Coviello, Stefania Sartini, Luca Quattrini, Cecilia Baraldi, Maria Cristina Gamberini, and Concettina La Motta
European Journal of Pharmaceutics and Biopharmaceutics, 2017, Volume 117, Page 276
R. Pushpalatha, S. Selvamuthukumar, and D. Kilimozhi
Journal of Drug Delivery Science and Technology, 2017, Volume 39, Page 362
Vikramjeet Singh, Tao Guo, Li Wu, Jianghui Xu, Botao Liu, Ruxandra Gref, and Jiwen Zhang
RSC Adv., 2017, Volume 7, Number 34, Page 20789
Xiaohong Chen, Ying-Kun Qiu, Cally Owh, Xian Jun Loh, and Yun-Long Wu
Nanoscale, 2016, Volume 8, Number 45, Page 18876
Valentina Venuti, Barbara Rossi, Andrea Mele, Lucio Melone, Carlo Punta, Domenico Majolino, Claudio Masciovecchio, Fabrizio Caldera, and Francesco Trotta
Expert Opinion on Drug Delivery, 2017, Volume 14, Number 3, Page 331
Samahe Sadjadi, Majid M. Heravi, and Mansoureh Daraie
Research on Chemical Intermediates, 2017, Volume 43, Number 2, Page 843
Mirna Pereira Moreira, George Ricardo Santana Andrade, Marcia Valeria Gaspar de Araujo, Tatiana Kubota, and Iara F. Gimenez
Carbohydrate Polymers, 2016, Volume 151, Page 557
Shankar Swaminathan, Roberta Cavalli, and Francesco Trotta
Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2016, Volume 8, Number 4, Page 579
Diego Andrade Vasconcelos, Tatiana Kubota, Douglas C. Santos, Marcia V.G. Araujo, Zaine Teixeira, and Iara F. Gimenez
Carbohydrate Polymers, 2016, Volume 136, Page 54
Monica R. P. Rao and Rohini C. Bhingole
Drug Development and Industrial Pharmacy, 2015, Volume 41, Number 12, Page 2029
Claudia Conte, Fabrizio Caldera, Ovidio Catanzano, Ivana D'Angelo, Francesca Ungaro, Agnese Miro, Diogo Silva Pellosi, Francesco Trotta, and Fabiana Quaglia
Journal of Pharmaceutical Sciences, 2014, Volume 103, Number 12, Page 3941
Grégorio Crini
Chemical Reviews, 2014, Volume 114, Number 21, Page 10940

Comments (0)

Please log in or register to comment.
Log in