Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year

IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
See all formats and pricing
More options …
Volume 63, Issue 4


Liquisolid systems and aspects influencing their research and development

Barbora Vraníková
  • Corresponding author
  • Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno 612 42,Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jan Gajdziok
  • Department of Pharmaceutics, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno 612 42,Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-12-31 | DOI: https://doi.org/10.2478/acph-2013-0034


Many modern drugs are poorly water soluble substances, which causes difficulties in the development of solid dosage forms with sufficient bioavailability. Preparation of liquisolid systems (LSS) is a novel technique for improving solubility, dissolution and bioavailability of such drugs. The basic principle of LSS preparation is conversion of the drug in liquid state into a free-flowing, compressible, dry powder through its absorption into suitable excipients - porous carriers (aluminometasilicates, microcrystalline cellulose), subsequently coated with material having high absorption capacity (silicon dioxide commonly known as colloidal silica). LSS exhibit advantages such as lower production costs compared to soft capsules, simple processing and enhanced drug release. The main benefit is higher bioavailability of the liquid drug, caused by a large surface area available for absorption. The article tries to clarify specific aspects connected with the formulation of LSS: properties of excipients (surface area, absorption capacity), variables related to the processing (solubility, liquid load factor) and dosage form evaluation.

Keywords: bioavailability improvement; carrier material; enhanced release; liquid drug; liquisolid technology

  • 1. M. Yazdanian, K. Briggs, C. Jankovsky and A. Hawi, The »high solubility« definition of the current FDA Guidance on Biopharmaceutical Classification System may be too strict for acidic drugs, Pharm. Res. 21 (2004) 293-299; DOI: 10.1023/B:PHAM.0000016242.48642.71.CrossrefGoogle Scholar

  • 2. L. X. Yu, G. L. Amidon, J. E. Polli, H. Zhao, M. U. Mehta, D. P. Conner, V. P. Shah, L. J. Lesko, M. Chen, V. H. L. Lee and A. S. Hussain, Biopharmaceutics classification system: The scientific basis for biowaiver extensions, Pharm. Res. 19 (2002) 921-925; DOI: 10.1023/A:1016473601633.CrossrefGoogle Scholar

  • 3. A. V. Yadav, A. S. Shete and A. P. Dabke, Formulation and evaluation of orodispersible liquisolid compacts of aceclofenac, Ind. J. Pharm. Educ. 44 (2010) 227-235.Google Scholar

  • 4. Y. Javadzadeh, M. R. Siahi, S. Asnaashari and A. Nokhodchi, Liquisolid technique as a tool for enhancement of poorly water-soluble drugs and evaluation of their physicochemical properties, Acta Pharm. 57 (2007) 99-109; DOI: 10.2478/v10007-007-0008-6.CrossrefGoogle Scholar

  • 5. S. Nazzal and M. A. Khan, Controlled release of a self-emulsifying formulation from a tablet dosage form: Stability assessment and optimization of some processing parameters, Int. J. Pharm. 315 (2006) 110-121; DOI: 10.1016/j.ijpharm.2006.02.019.CrossrefGoogle Scholar

  • 6. N. Rasenack and B. W. Müller, Dissolution rate enhancement by in situ micronization of poorly water-soluble drugs, Pharm. Res. 19 (2002) 1894-1900; DOI: 10.1023/A:1021410028371.CrossrefGoogle Scholar

  • 7. A. B. Nighute and S. B. Bhise, Enhancement of dissolution rate of Rifabutin by preparation of microcrystals using solvent change method, Int. J. Pharm. Tech. Res. 1 (2009) 142-148.Google Scholar

  • 8. G. V. Betager and K. R. Makarla, Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques, Int. J. Pharm. 126 (1995) 155-160; DOI: 10.1016/0378-5173(95) 04114-1.CrossrefGoogle Scholar

  • 9. J. W. Millard, F. A. Alvarez-Núñez and S. H. Yalkowsky Solubilization by cosolvents establishing useful constants for the log-linear model, Int. J. Pharm. 245 (2002) 153-166; DOI: 10.1016/ S0378-5173(02)00334-4.CrossrefPubMedGoogle Scholar

  • 10. P. Balakrishnan, B. Le, D. H. Oh, J. O. Kim, M. J. Hong, J. Jee, J. A. Kim, B. K. Yoo, J. S. Woo, C. S. Yong and H. Choi, Enhanced oral bioavailability of dexibuprofen by a novel solid self-emulsifying drug delivery system (SEDDS), Eur. J. Pharm. Biopharm. 72 (2009) 539-545; DOI: 10.1016/j. ejpb.2009.03.001.CrossrefGoogle Scholar

  • 11. A. Zvonar, K. Berginc, A. Kristl and M. Ga{perlin, Microencapsulation of self-microemulsifying system: Improving solubility and permeability of furosemide, Int. J. Pharm. 388 (2010) 151-158; DOI: 10.1016/j.ijpharm.2009.12.055.CrossrefGoogle Scholar

  • 12. H. A. Hassan, A. H. Al-Marzouqi, B. Jobe, A. A. Hamza and G. A. Ramadan, Enhancement of dissolution amount and in vivo bioavailability of itraconazole by complexation with b-cyclodextrin using supercritical carbon dioxide, J. Pharmaceut. Biomed. 45 (2007) 243-250; DOI: 10.1016/j.jpba.2007.06.011.CrossrefGoogle Scholar

  • 13. T. Tanino, T. Ogiso, M. Iwaki, G. Tanabe and O. Muraoka, Enhancement of oral bioavailability of phenytoin by esterification, and in vitro hydrolytic characteristics of prodrugs, Int. J. Pharm. 163 (1998) 91-102; DOI: 10.1016/S0378-5173(97)00374-8.CrossrefGoogle Scholar

  • 14. S. G. Kapsi and J. W. Ayres, Processing factors in development of solid solution formulation of itraconazole for enhancement of drug dissolution and bioavailability, Int. J. Pharm. 229(2001) 193-203; DOI: 10.1016/S0378-5173(01)00867-5.CrossrefPubMedGoogle Scholar

  • 15. D. X. Li, Y. Oh, S. Lim, J. O. Kim, H. J. Yang, J. H. Sung, C. S. Yong and H. Choi, Novel gelatin microcapsule with bioavailability enhancement of ibuprofen using spray-drying technique, Int.J. Pharm. 355 (2008) 277-284; DOI: 10.1016/j.ijpharm.2007.12.020.CrossrefGoogle Scholar

  • 16. V. Stella, J. Haslam, N. Yata, H. Okada, S. Lindenbaum and T. Higuchi, Enhancement of bioavailability of a hydrophobic amine antimalarial by formulation with oleic acid in a soft gelatin capsule, J. Pharm. Sci. 67 (1978) 1375-1377.CrossrefGoogle Scholar

  • 17. V. K. Nagabandi, T. Ramarao and K. N. Jayaveera, Liquisolid compacts: A novel approach to enhance bioavailability of poorly soluble drugs, Int. J. Pharm. Biol. Sci. 1 (2011) 89-102.Google Scholar

  • 18. N. Tiong and A. A. Elkordy, Effects of liquisolid formulations on dissolution of naproxen, Eur. J. Pharm. Biopharm. 73 (2009) 373-384; DOI: 10.1016/j.ejpb.2009.08.002.CrossrefGoogle Scholar

  • 19. K. Kavitha, K. N. S. LovaRaju, N. S. Ganesh and B. Ramesh, Effect of dissolution rate by liquisolid compacts approach: An overview, Der Pharmacia Lettre 3 (2011) 71-83.Google Scholar

  • 20. A. S. Kulkarni, N. H. Aloorkar, M. S. Mane and J. B. Gaja, Liquisolid systems: a review, Int. J. Pharm. Sci. Nanotechnol. 3 (2010) 795-802.Google Scholar

  • 21. S. M. Gavali, S. S. Pacharane, S. V. Sankpal, K. R. Jadhav and V. J. Kadam, Liquisolid compact: A new technique for enhancement of drug dissolution, Int. J. Res. Pharm. Chem. 1 (2011) 705-713.Google Scholar

  • 22. A. B. Karmarkar, I. D. Gonjari, A. H. Hosmani, P. N. Dhabale and S. B. Bhise, Liquisolid tablets: A novel approach for drug delivery, Int. J. Health Res. 2 (2009) 45-50.Google Scholar

  • 23. A. B. Karmarkar, I. D. Gonjari and A. H. Hosmani, Liquisolid technology for dissolution rate enhancement or sustained release, Expert Opin. Drug Deliv. 7 (2010) 1227-1234; DOI: 10.1517/17425247.2010.511173.CrossrefGoogle Scholar

  • 24. M. El-Hammadi and N. Awad, Investigating the use of liquisolid compacts technique to minimize the influence of pH variations on loratadine release, AAPSPharmSciTech. 13 (2012) 53-58; DOI: 10.1208/s12249-011-9719-6.CrossrefGoogle Scholar

  • 25. A. K. Elkhodairy and M. W. Samy, Optimization and evaluation of micromeritic and release properties of high dose flutamide liquisolid systems, Lett. Drug Des. Discov. 9 (2012) 336-344; DOI: 10.2174/157018012799129873.CrossrefGoogle Scholar

  • 26. Y. Javadzadeh, B. Jafari-Navimipour and A. Nokhodchi, Liquisolid technique for dissolution rate enhancement of a high dose water-insoluble drug (carbamazepine), Int. J. Pharm. 341 (2007) 26-34; DOI: 10.1016/j.ijpharm.2007.03.034.CrossrefGoogle Scholar

  • 27. S. K. Singh, K. K. Srinivasan, K. Gowthamarajan, D. Prakash, N. B. Gaikwad and D. S. Singare, Influence of formulation parameters on dissolution rate enhancement of glyburide using liquisolid technique, Drug Dev. Ind. Pharm. 38 (2012) 961-970; DOI: 10.3109/03639045.2011.634810.CrossrefGoogle Scholar

  • 28. C. M. Hentzschel, A. Sakmann and C. S. Leopold, Suitability of various excipients as carrier and coating materials for liquisolid compacts, Drug Dev. Ind. Pharm. 37 (2011) 1200-1207; DOI: 10.3109/03639045.2011.564184.CrossrefGoogle Scholar

  • 29. B. M. El-Houssieny, L. F. Wahman and N. M. Arafa, Bioavailability and biological activity of liquisolid compact formula of repaglinide and its effect on glucose tolerance in rabbits, Biosci.Trends. 4 (2010) 17-24.Google Scholar

  • 30. K. A. Khaled, Y. A. Asiri and Y. M. El-Sayed, In vivo evaluation of hydrochlorothiazide liquisolid tablets in beagle dogs, Int. J. Pharm. 222 (2001) 1-6; DOI: 10.1016/S0378-5173(01)00633-0.CrossrefGoogle Scholar

  • 31. B. Chen, Z. Wang, G. Quan, X. Peng, X. Pan, R. Wang, Y. XU, G. Li and C. Wu, In vitro and in vivo evaluation of ordered mesoporous silica as a novel adsorbent in liquisolid formulation, Int. J. Nanomed. 7 (2012) 199-209; DOI: 10.2147/IJN.S26763.CrossrefGoogle Scholar

  • 32. R. H. Fahmy and M. A. Kassem, Enhancement of famotidine dissolution rate through liquisolid tablets formulation: In vitro and in vivo evaluation, Eur. J. Pharm. Biopharm. 69(2008) 993-1003; DOI: 10.1016/j.ejpb.2008.02.017.CrossrefGoogle Scholar

  • 33. I. D. Gonjari, A. B. Karmarkar and A. H. Hosmani, Evaluation of in vitro dissolution profile comparison methods of sustained release tramadol hydrochloride liquisolid compact formulations with marketed sustained release tablets, Dig. J. Nanomater. Bios. 4 (2009) 651-661.Google Scholar

  • 34. H. S. Mahajan, M. R. Dhamne, S. G. Gattani, A. D. Rasal and H. T. Shaikh, Enhanced dissolution rate of glipizide by a liquisolid technique, Int. J. Pharm. Sci. Nanotech. 3 (2011) 1205-1213.Google Scholar

  • 35. Y. Javadzadeh, L. Musaalrezaei and A. Nokhodchi, Liquisolid technique as a new approach to sustain propranolol hydrochloride release from tablet matrices, Int. J. Pharm. 362 (2008) 102-108; DOI: 10.1016/j.ijpharm.2008.06.022. CrossrefGoogle Scholar

  • 36. A. Nokhodchi, R. Aliakbar, S. Desai and Y. Javadzadeh, Liquisolid compacts: The effect of cosolvent and HPMC in theophylline release, Colloid Surface B. 79 (2010) 262-269; DOI: 10.1016/j. colsurfb.2010.04.008.CrossrefGoogle Scholar

  • 37. Center for the Evaluation of Risks to Human Reproduction, NTP-CERHR Expert Panel report on the reproductive and developmental toxicity of propylene glycol, Reprod. Toxicol. 18 (2004) 533-579; DOI: 10.1016/j.reprotox.2004.01.004.CrossrefGoogle Scholar

  • 38. Cefic, Propylene Glycol - Pharmaceuticals, n.d.; http://www.propylene-glycol.com/index.php/propylene-glycol-ups-ep-pharmaceutical-grade/pharmaceuticals, access date January 17, 2012.Google Scholar

  • 39. S. Gubbi and R. Jarag, Liquisolid Technique for enhancement of dissolution properties of bromhexine hydrochloride, Res. J. Pharm. Tech. 2 (2009) 382-386.Google Scholar

  • 40. BASF group, Lutrol® E Liquid Grades, 2010; http://www.pharma-ingredients.basf.com/Statements/Technical%20Informations/EN/Pharma%20Solutions/03_030734e_Lutrol%20E%20-%20Liquid%20Grades.pdf; access date January 18, 2012.Google Scholar

  • 41. R. C. Rowe, P. J. Sheskey and S. C. Owen, Handbook of Pharmaceutical Excipients, 5th ed., Pharmaceutical Press, London 2006, p. 918.Google Scholar

  • 42. C. F. Daher, G. M. Baroody and R. J. Howland, Effect of a surfactant, Tween 80, on the formation and secretion of chylomicrons in the rat, Food Chem. Toxicol. 41 (2003) 575-582; DOI: 10.1016/ S0278-6915(02)00299-5.CrossrefGoogle Scholar

  • 43. T. Tatsuishi, Y. Oyama, K. Iwase, J. Y. Yamaguchi, M. Kobayashi, Y. Nishimura, A. Kanada and S. Hirama, Polysorbate 80 increases the susceptibility to oxidative stress in rat thymocytes, Toxicology 207 (2005) 7-14; DOI: 10.1016/j.tox.2004.07.020.CrossrefGoogle Scholar

  • 44. W. Wang, Y. J. Wang and D. Q. Wang, Dual effect of Tween 80 on protein stability, Int. J. Pharm. 347 (2008) 31-38; DOI: 10.1016/j.ijpharm.2007.06.042.CrossrefGoogle Scholar

  • 45. S. A. Tayel, I. I. Soliman and D. Louis, Improvement of dissolution properties of carbamazepine through application of the liquisolid tablet technique, Eur. J. Pharm. Biopharm. 69 (2008) 342-347; DOI: 10.1016/j.ejpb.2007.09.003.CrossrefGoogle Scholar

  • 46. M. Saeedi, J. Akbari, K. Morteza-Semnani, R. Enayati-Fard, S.Sar-Reshteh-dar and A. Soleymani, Enhancement of dissolution rate of indomethacin using liquisolid compacts, Iran J. Pharm.Res. 10 (2011) 25-34.Google Scholar

  • 47. V. B. Yadav and A. V. Yadav, Improvement of solubility and dissolution of indomethacin by liquisolid and compaction granulation technique, J. Pharm. Sci. Res. 1 (2009) 44-51.Google Scholar

  • 48. Y. Javadzadeh, M. R. Siahi-Shadbad, M. Barzegar-Jalali and A. Nokhodchi, Enhancement of dissolution rate of piroxicam using liquisolid compacts, Il Farmaco 60 (2005) 361-365; DOI: 10. 1016/j.farmac.2004.09.005.CrossrefGoogle Scholar

  • 49. A. A. Elkordy, U. Bhangale, N. Murle and M. F. Zarara, Combination of lactose (as a carrier) with Cremophor® EL (as a liquid vehicle) to enhance dissolution of griseofulvin, Powder Technol. 246 (2013) 182-186; DOI: 10.1016/j.powtec.2013.05.024.CrossrefGoogle Scholar

  • 50. B. Akinlade, A. A. Elkordy, E. A. Essa and S. Elhagar, Liquisolid systems to improve the dissolution of furosemide, Sci. Pharm. 78 (2010) 325-344; DOI: 10.3797/scipharm.0912-23.CrossrefPubMedGoogle Scholar

  • 51. C. C. Liao and C. I. Jarowski, Dissolution rates of corticoid solutions dispersed on silicas, J. Pharm.Sci. 73 (1984) 401-403; DOI: 10.1002/jps.2600730330.CrossrefGoogle Scholar

  • 52. A. A. Elkordy, X. N. Tan and E. A. Essa, Spironolactone release from liquisolid formulations prepared with CapryolTM 90, Solutol® HS-15 and Kollicoat® SR 30 D as non-volatile liquid vehicles, Eur. J. Pharm. Biopharm. 83 (2013) 203-223; DOI: 10.1016/j.ejpb.2012.08.004.CrossrefGoogle Scholar

  • 53. A. A. Elkordy, E. A. Essa, S. Dhuppad and P. Jammiqumpula, Liquisolid technique to enhance and to sustain griseofulvin dissolution: effect of choice of non-volatile liquid vehicles, Int. J. Pharm. 434 (2012) 122-132; DOI: 10.1016/j.ijpharm.2012.05.072. CrossrefGoogle Scholar

  • 54. V. Agarwal, A. Siddiqui, H. Ali and S. Nazzal, Dissolution and power flow characterization of solid self-emulsified drug delivery system (SEDDS), Int. J. Pharm. 366 (2009) 44-52; DOI: 10. 1016/j.ijpharm.2008.08.046.CrossrefGoogle Scholar

  • 55. G. Kahr and F. T. Madsen, Determination of the cation exchange capacity and the surface area of bentonite, illite and kaolinite by methylene blue absorption, Appl. Clay Sci. 9 (1995) 327-336; DOI: 10.1016/0169-1317(94)00028-O.CrossrefGoogle Scholar

  • 56. M. Van Speybroeck, R. Mellaerts, R. Mols, T. D. Thi, J. A. Martens, J. Van Humbeeck, P. Annaert, G. Van den Mooter and P. Augistijns, Enhanced absorption of the poorly soluble drug fenofibrate by tuning its release rate from ordered mesoporous silica, Eur. J. Pharm. Sci. 41 (2010) 623-630; DOI: 10.1016/j.ejps.2010.09.002.CrossrefGoogle Scholar

  • 57. V. B. Yadav, A. B. Nighute, A. V. Yadav and S. B. Bhise, Aceclofenac size enlargement by non- -aqueous granulation with improved solubility and dissolution, Arch. Pharm. Sci. Res. 1 (2009) 115-122.Google Scholar

  • 58. P. G. Manogar, B. N. V. Hari and D. R. Devi, Emerging liquisolid compact technology for solubility enhancement of BCS Class-II drug, J. Pharm. Sci. Res. 3 (2011) 1604-1611.Google Scholar

  • 59. Fuji Chemical Industry Co., Ltd., Neusilin - Generel Properties, 2010; http://www.neusilin.com/product/general_properties.php; access date October 18, 2012.Google Scholar

  • 60. C. M. Hentzschel, M. Alnaief, I. Smirnova, A. Sakmann and C. S. Leopold, Tableting properties of silica aerogels and other silicates, Drug Dev. Ind. Pharm. 38 (2012) 462-467; DOI: 10.3109/03639045.2011.611806.CrossrefGoogle Scholar

  • 61. Fuji Chemical Industry Co., Ltd., Neusilin, 2011; http://www.fujichemical.co.jp/english/medical/ medicine/neusilin/index.html; access date October 18, 2012.Google Scholar

  • 62. Fuji Chemical Industry Co., Ltd., The Specialty Excipient Neusilin®, 2009; http://www.harke. com/fileadmin/images/pharma/Broschueren/Fuji_Neusilin.pdf; access date January 18, 2012.Google Scholar

  • 63. X. Zhao, Y. Q. Zhou, S. Potharaju, H. Lou, H. M. Sun, E. Brunson, H. Almoazen and J. Johnson, Development of a self micro-emulsifying tablet of cyclosporine-A by the liquisolid compact technique, Int. J. Pharm. Sci. Res. 2 (2011) 2299-2308.Google Scholar

  • 64. B. Van Eerdenbrugh, L. Froyen, J. Van Humbeeck, J. A. Martens, P. Augustijns and G. Van Den Mooter, Alternative matrix formers for nanosupension solidification: Dissolution performance and X-ray microanalysis as an evaluation tool for powder dispersion, Eur. J. Pharm. Sci. 35 (2008) 344-353; DOI: 10.1016/j.ejps.2008.08.003.CrossrefGoogle Scholar

  • 65. M. J. Kang, S. Y. Jung, W. H. Song, J. S. Park, S. U. Choi, K. T. Oh, H. K. Choi, Y. W. Choi, J. Lee, B. J. Lee and S. C. Chi, Immediate release of ibuprofen from Fujicalin®-based fast-dissolving self-emulsifying tablets, Drug Dev. Ind. Pharm. 37 (2011) 1298-1305; DOI:10.3109/03639045.2011.571695.CrossrefGoogle Scholar

  • 66. H. Schlack, A. Bauer-Brandl, R. Schubert and D. Becker, Properties of Fujicalin®, A new modified anhydrous dibasic calcium phosphate for direct compression: Comparison with dicalcium phosphate dihydrate, Drug Dev. Ind. Pharm. 27 (2001) 789-801.CrossrefGoogle Scholar

  • 67. Z. Wu, Y. Jiang, T. Kim and K. Lee, Effect of surface coating on the controlled release of vitamin B1 from mesoporous silica tablets, J. Control. Release 119 (2007) 215-221; DOI: 10.1016/j.jconrel. 2007.03.001.CrossrefGoogle Scholar

  • 68. T. Ukmar and O. Planin{ek, Ordered mesoporous silicates as matrices for controlled release of drugs, Acta Pharm. 60 (2010) 373-385; DOI: 10.2478/v1007-010-0037-4.CrossrefGoogle Scholar

  • 69. M. Vallet-Regi, A. Ramila, R. P. del Rea and J. Pérez-Pariente, A new property of MCM-41: drug delivery system, Chem. Mater. 13 (2001) 308-311; DOI: 10.1021/cm0011559.70. R. Mellaerts, R. Mois, J. A. G. Jammaer, C. A. Aerts, P. Annaert, J. Van Humbeeck, G. Van den Mooter, P. Augustijns and J. A. Martens, Increasing the oral bioavailability of the poorly water soluble drug itraconazole with ordered mesoporous silica, Eur. J. Pharm. Biopharm. 69 (2008) 223-230; DOI: 10.1016/j.ejpb.2007.11.006. CrossrefGoogle Scholar

  • 71. M. Vialpando, F. Backhuijs, J. A. Martens and G. Van den Mooter, Risk assessment of premature drug release during wet granulation of ordered mesoporous silica loaded with poorly soluble compounds intraconazole, fenofibrate, naproxen, and ibuprofen, Eur. J. Pharm. Biopharm. 81 (2012) 190-198; DOI: 10.1016/j.ejpb.2012.01.012.CrossrefGoogle Scholar

  • 72. T. Heikkilä, J. Salonen, J. Tuura, N. Kumar, T. Salmi, D. Y. Murzin, M. S. Hamdy, G. Mul, L. Laitinen, A. M. Kaukonen, J. Hirvonen and V. P. Lehto, Evaluation of mesoporous TCPSi, MCM-41, SBA-15 and TUD-1 materials as API carriers for oral drug delivery, Drug Deliv. 14 (2007) 337-347; DOI: 10.1080/10717540601098823.CrossrefGoogle Scholar

  • 73. M. Van Speybroeck, V. Barillaro, T. D. Thi, R. Mellaerts, J. Martens, J. Van Humbeeck, J. Vermant, P. Annaert, G. Van den Mooter and P. Augustijns, Ordered mesoporous silica material SBA-15: a broad-spectrum formulation platform for poorly soluble drugs, J. Pharm. Sci. 98 (2009) 2648-2658; DOI: 10.1002/jps.21638.CrossrefGoogle Scholar

  • 74. B. Chen, G. Quan, Z. Wang, J. Chen, L. Wu, Y. Xu, G. Li and C. Wu, Hollow mesoporoussilicas as a drug solution delivery system for insoluble drugs, Powder Technol. 240 (2013) 48-53; DOI: 10.1016/j.powtec.2012.07.008.CrossrefGoogle Scholar

  • 75. S. R. Gubbi and R. Jarag, Formulation and characterization of atorvastatin calcium liquisolid compacts, Asian J. Pharm. Sci. 5 (2010) 50-60.Google Scholar

  • 76. K. M. El-Say, A. M. Samy and M. I. Fetouh, Formulation and evaluation of rofecoxib liquisolid tablets, Int. J. Pharm. Sci. Rev. Res. 3 (2010) 135-142.Google Scholar

  • 77. A. Krupa, D. Majda, R. Jachowicz and W. Mozgawa, Solid-state interaction of ibuprofen and Neusilin US2, Thermochim. Acta 509 (2010) 12-17; DOI: 10.1016/j.tca.2010.05.009.Google Scholar

  • 78. A. Sheth and C. I. Jarowski, Use of powdered solutions to improve the dissolution rate of polythiazide tablets, Drug Dev. Ind. Pharm. 16 (1990) 769-777; DOI: 10.3109/03639049009114908.CrossrefGoogle Scholar

  • 79. E. B. Basalious, W. El-Sebaie and O. El-Gazayerly, Rapidly absorbed orodispersible tablet containing molecularly dispersed felodipine for management of hypertensive crisis: Development, optimization and in vitro/in vivo studies, Pharm. Dev. Technol. 18 (2013) 407-416; DOI: 10.3109/CrossrefGoogle Scholar

  • 10837450.2012.659258.Google Scholar

  • 80. S. S. Spireas, C. I. Jarowski and B. D. Rohera, Powdered solution technology: Principles and mechanism, Pharm. Res. 9 (1992) 1351-1358; DOI: 10.1023/A:1015877905988.CrossrefGoogle Scholar

  • 81. M. Khanfar, S. M. Sheikh and R. Hawari, Formulation factors affecting the release of ezetimibe from different liquisolid compacts, Pharm. Dev. Technol. 18 (2013) 417-427; DOI: 10.3109/10837450.2012.680594.CrossrefGoogle Scholar

  • 82. S. Spireas and S. M. Bolton, Liquisolid Systems and Methods of Preparing Same, US 5,968,550, 19 October 1999.Google Scholar

  • 83. S. Spireas and S. M. Bolton SM, Liquisolid Systems and Methods of Preparing Same, US 6,423,339, 23 July 2002.Google Scholar

  • 84. K. Rajesh, R. Rajalakshmi, J. Umamaheswari and C. K. A. Kumar, Liquisolid technique: a novel approach to enhance solubility and bioavailability, Int. J. Biopharm. 2 (2011) 8-13.Google Scholar

  • 85. R.Grover, S. Spireas and C. Lau-Cam, Development of a simple spectrophotometric method for propylene glycol detection in tablets, J. Pharm. Biomed. Anal. 16 (1998) 931-938; DOI: 10.1016/ S0731-7085(97)00098-8.CrossrefGoogle Scholar

  • 86. R. Boghra, A. Patel, H. Desai and A. Jadhav, Formulation and evaluation of irbesartan liquisolid tablets, Int. J. Pharm. Sci. Rev. Res. 9 (2011) 32-37.Google Scholar

  • 87. S. V. Kasture, S. B. Gondkar, A. B. Darekar, D. Priyobrata and K. V. Bhambar, Enhancement of dissolution rate of lansoprazole using liquisolid tablet technique, Int. J. Pharm. Res. 3 (2011) 27-31.Google Scholar

  • 88. M. A. Hassan and H. M. El-Saghir, Enhancement of dissolution and the anti-inflammatory effect of nimesulide, using liquisolid compact for oral appliccation, Bull. Pharm. Sci. 34 (2011) 1-8. Google Scholar

  • 89. The European Directorate for the Quality of Medicines & Health Care, European Pharmacopoeia 7.2, 2011; http://online6.edqm.eu/ep702/; access date February 18, 2012.Google Scholar

  • 90. D. C. Bibby, N. M. Davies and I. G. Tucker, Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems, Int. J. Pharm. 197 (2000) 1-11; DOI: 10.1016/S0378-5173(00)00335-5.CrossrefGoogle Scholar

  • 91. D. Q. Craig, The mechanisms of drug release from solid dispersions in water-soluble polymers, Int. J. Pharm. 231 (2002) 131-144; DOI: 10.1016/S0378-5173(01)00891-2.CrossrefGoogle Scholar

  • 92. A. Nokhodchi, C. M. Hentzschel and C. S. Leopold, Drug release from liquisolid systems: speed it up, slow it down, Expert Opin. Drug Deliv. 8 (2011) 191-205; DOI: 10.1517/17425247.2011.548801.CrossrefGoogle Scholar

  • 93. A. Panda and D. M. Biyani, Studies on liquisolid system as a technique to modify the dissolution rate of nefedipine, Am. J. Pharmtech. Res. 3 (2013) 686-698.Google Scholar

  • 94. N. Chella, N. Shastri and R. R. Tadikonda, Use of the liquisolid compact technique for improvement of the dissolution rate of valsartan, Acta Pharm. Sin B. 2 (2012) 502-508; DOI: 10.1016/j. apsb.2012.07.005..CrossrefGoogle Scholar

  • 95. N. Thakur, S. L. Khokra, D. Sharma, N. S. Thakur, R. Purohit and V. Arya, A review on pharmaceutical application of liquisolid technique, Am. J. Pharmtech. Res. 1 (2011) 1-18. Google Scholar

About the article

Published Online: 2013-12-31

Published in Print: 2013-12-01

Citation Information: Acta Pharmaceutica, Volume 63, Issue 4, Pages 447–465, ISSN (Online) 1846-9558, ISSN (Print) 1330-0075, DOI: https://doi.org/10.2478/acph-2013-0034.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Hana Hurychová, Martin Kuentz, and Zdenka Šklubalová
Journal of Pharmaceutical Innovation, 2017
N.R. Jadhav, P.V. Irny, and U.S. Patil
Journal of Drug Delivery Science and Technology, 2017, Volume 38, Page 97
Barbora Vraníková, Sylvie Pavloková, and Jan Gajdziok
Journal of Pharmaceutical Sciences, 2017, Volume 106, Number 3, Page 817
Mei Lu, Haonan Xing, Tianzhi Yang, Jiankun Yu, Zhen Yang, Yanping Sun, and Pingtian Ding
Pharmaceutical Development and Technology, 2017, Volume 22, Number 1, Page 77
Devender Reddy Komala, Karthik Yadav Janga, Raju Jukanti, Suresh Bandari, and M. Vijayagopal
Journal of Drug Delivery Science and Technology, 2015, Volume 30, Page 232
Barbora Vraníková, Jan Gajdziok, and Petr Doležel
Pharmaceutical Development and Technology, 2017, Volume 22, Number 2, Page 138
Leila Azharshekoufeh B., Javad Shokri, Khosro Adibkia, and Yousef Javadzadeh
Colloids and Surfaces B: Biointerfaces, 2015, Volume 136, Page 185
Tuba Buyuktimkin and Dale Eric Wurster
Journal of Pharmaceutical Sciences, 2015, Volume 104, Number 8, Page 2566
Tuba Buyuktimkin and Dale Eric Wurster
International Journal of Pharmaceutics, 2015, Volume 478, Number 1, Page 164

Comments (0)

Please log in or register to comment.
Log in