Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year


IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
Online
ISSN
1846-9558
See all formats and pricing
More options …
Volume 64, Issue 4 (Dec 2014)

Issues

Therapeutic drug monitoring of atypical antipsychotic drugs

Milan Grundmann
  • Corresponding author
  • Department of Clinical Pharmacology Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ivana Kacirova
  • Department of Clinical Pharmacology Faculty of Medicine University of Ostrava, Ostrava, Czech Republic
  • Department of Clinical Pharmacology Department of Laboratory Diagnostics University Hospital Ostrava, Ostrava Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Romana Urinovska
  • Department of Clinical Pharmacology Department of Laboratory Diagnostics University Hospital Ostrava, Ostrava Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-20 | DOI: https://doi.org/10.2478/acph-2014-0036

Abstract

Schizophrenia is a severe psychiatric disorder often associated with cognitive impairment and affective, mainly depressive, symptoms. Antipsychotic medication is the primary intervention for stabilization of acute psychotic episodes and prevention of recurrences and relapses in patients with schizophrenia. Typical antipsychotics, the older class of antipsychotic agents, are currently used much less frequently than newer atypical antipsychotics. Therapeutic drug monitoring (TDM) of antipsychotic drugs is the specific method of clinical pharmacology, which involves measurement of drug serum concentrations followed by interpretation and good cooperation with the clinician. TDM is a powerful tool that allows tailor-made treatment for the specific needs of individual patients. It can help in monitoring adherence, dose adjustment, minimizing the risk of toxicity and in cost-effectiveness in the treatment of psychiatric disorders. The review provides complex knowledge indispensable to clinical pharmacologists, pharmacists and clinicians for interpretation of TDM results.

Keywords : therapeutic drug monitoring; antipsychotic drugs; therapeutic reference ranges

References

  • 1. M. Grundmann and I. Kacirova, Significance of TDM, phenotyping and genotyping for the correct drug dosage, Cas. Lek. Ces. 149 (2010) 482-487.Google Scholar

  • 2. M. Grundmann, I. Kacirova and R. Urinovska, Therapeutic monitoring of psychoactive drugs - antidepressants: A review, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. (2013) in press; DOI: 10.5507/bp.2013.020.CrossrefGoogle Scholar

  • 3. I. Kacirova, M. Grundmann and R. Urinovska, General principles of therapeutic monitoring of psychoactive drugs, Klin. Farmakol. Farm. 26 (2012) 131-134.Google Scholar

  • 4. C. Hiemke and M. Shams, Phenotyping and genotyping of drug metabolism to guide pharmacotherapy in psychiatry, Curr. Drug Del. 10 (2013) 46-53.CrossrefGoogle Scholar

  • 5. M. R. Muscatello, A. Bruno, G. Pandolfo, U. Micò, S. Settineri and R. Zoccali, Emerging treatments in the management of schizophrenia - focus on sertindole, Drug Des. Devel. Ther. 4 (2010) 187-201; DOI: 10.2147/DDDT.S6591.CrossrefGoogle Scholar

  • 6. J. M. Kane and C. U. Correll, Past and present progress in the pharmacologic treatment of schizophrenia, J. Clin. Psychiatry 71 (2010) 1115-1124; DOI: 10.4088/JCP.10r06264yelCrossrefGoogle Scholar

  • 7. J. W. Newcomer, Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review, CNS Drugs 19 (Suppl. 1) (2005) 1-93.PubMedGoogle Scholar

  • 8. N. Herrmann and K. L. Lanctot, Do atypical antipsychotics cause stroke?, CNS Drugs 19 (2005) 91-103.CrossrefGoogle Scholar

  • 9. B. Luft and D. Taylor, A review of atypical antipsychotic drugs versus conventional medication in schizophrenia, Expert Opin. Pharmacother. 7 (2006) 1739-1748.Google Scholar

  • 10. J. C. Huffman and J. E. Alpert, An approach to the psychopharmacologic care of patients: antidepressants, antipsychotics, anxiolytics, mood stabilizers, and natural remedies, Med. Clin. North Am. 94 (2010) 1141-1160; DOI: 10.1016/j.mcna.2010.08.009.CrossrefGoogle Scholar

  • 11. C. Hiemke, A. Dragicevic, G. Gründer, S. Hättter, J. Sachse, I. Vernaleken and M. J. Müller, Therapeutic monitoring of new antipsychotic drugs, Ther. Drug Monit. 26 (2004) 156-160.CrossrefGoogle Scholar

  • 12. L. Farde, A. L. Nordström, F. A. Wiesel, S. Pauli, C. Halldin and G. Sedvall, Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects, Arch. Gen. Psychiatry 49 (1992) 538-544.CrossrefGoogle Scholar

  • 13. S. Nyberg, A. L. Nordström, C. Halldin and L. Farde, Positron emission tomography studies on D2 dopamine receptor occupancy and plasma antipsychotic drug levels in man, Int. Clin. Psychopharmacol. 10 (Suppl. 3) (1995) 81-85.Google Scholar

  • 14. P. J. Perry, Therapeutic drug monitoring of atypical antipsychotics. Is it of potential clinical value? CNS Drugs 13 (2000) 167-171.CrossrefGoogle Scholar

  • 15. M. C. Mauri, L. S. Volonteri, A. Colasanti, A. Fiorentini, I. F. de Gaspari and S. R. Bareggi, Clinical pharmacokinetics of atypical antipsychotics. A critical review of the relationship between plasma concentrations and clinical response, Clin. Phamacokinet. 46 (2007) 359-388.CrossrefGoogle Scholar

  • 16. L. Urichuk, T. I. Prior, S. Dursun and G. Baker, Metabolism of atypical antipsychotics: involvement of cytochrome p450 enzymes and relevance for drug-drug interactions, Curr. Drug Metab. 9 (2008) 410-418.CrossrefGoogle Scholar

  • 17. E. Spina and J. de Leon, Metabolic drug interactions with newer antipsychotics: A comparative review, Basic Clin. Pharmacol. 100 (2007) 4-22.CrossrefGoogle Scholar

  • 18. R. C. Dorey, S. H. Preskorn and P. K. Widener, Results compared for tricyclic antidepressants as assayed by liquid chromatography and enzyme immunoassay, Clin. Chem. 34 (1988) 2348-2351.Google Scholar

  • 19. F. Saint-Marcoux, F. L. Sauvage and P. Marquet, Current role of LC-MS in therapeutic drug monitoring, Anal. Bioanal. Chem. 388 (2007) 1327-1349.CrossrefGoogle Scholar

  • 20. D. J. Brunswick, B. Needelman and J. Mendels, Specific radioimmunoassay of amitriptyline and nortriptyline, J. Clin. Pharmacol. 7 (1979) 343-348.CrossrefGoogle Scholar

  • 21. C. Fernandes, E. Hoeck, P. Sandra and F. M. Lancas, Determination of fluoxetine in plasma by gas chromatography-mass spectrometry using stir bar sorptive extraction, Anal. Chim. Acta 614 (2008) 201-207; DOI: 10.1016/j.aca.2008.03.036.CrossrefGoogle Scholar

  • 22. C. B. Eap, G. Bouchoux, M. Amey, N. Cochard, L. Savary and P. Baumann, Simultaneous determination of human plasma levels of citalopram, paroxetine, sertraline, and their metabolites by gas chromatography-mass spectrometry, J. Chromatogr. Sci. 36 (1998) 365-371.CrossrefGoogle Scholar

  • 23. R. Urinovska, H. Brozmanova, P. Sistik, P. Silhan, I. Kacirova, K. Lemr and M. Grundmann, Liquid chromatography-tandem mass spectrometry method for determination of five antidepressants and four atypical antipsychotics and their main metabolites in human serum, J. Chromatogr. B. 907 (2012) 101-107; DOI: 10.1016/j.jchromb.2012.09.009.CrossrefGoogle Scholar

  • 24. H. Kirchherr and W. N. Kühn-Velten, Quantitative determination of forty-eight antidepressants and antipsychotics in human serum by HPLC tandem mass spectrometry: A multi-level, singlesample approach, J. Chromatogr. B. 843 (2006) 100-113. Google Scholar

  • 25. K. K. Erickson-Ridout, D. Sun and P. Lazarus, Glucuronidation of the second-generation antipsychotic clozapine and its active metabolite N-desmethylclozapine. Potential importance of the UGT1A1 A(TA)7TAA and UGT1A4 L48V polymorphisms, Pharmacogen. Gen. 22 (2012) 561-576; DOI: 10.1097/FPC.0b013e328354026b.CrossrefGoogle Scholar

  • 26. J. Leon, Glucuronidation enzymes, genes and psychiatry, Int. J. Neuropsychoph. 6 (2003) 57-72.CrossrefGoogle Scholar

  • 27. H. L. Liston, J. S. Markowitz and C. L. de Vane, Drug glucuronidation in clinical psychopharmacology, J. Clin. Psychopharmacol. 21 (2001) 500-515.CrossrefGoogle Scholar

  • 28. A. Y. Khan and S. H. Preskorn, Examining concentration-dependent toxicity of clozapine: role of therapeutic drug monitoring, J. Psychiatr. Pract. 11 (2005) 289-301.CrossrefGoogle Scholar

  • 29. E. Spina, A. Avenoso, G. Facciolà, M.G. Scordo, M Ancione, A. G. Madia, A. Ventimiglia and E. Perucca, Relationship between plasma concentrations of clozapine and norclozapine and therapeutic response in patients with schizophrenia resistant to conventional neuroleptics, Psychopharmacology 148 (2000) 83-89.Google Scholar

  • 30. P. J. Perry, D. D. Miller, S. V. Arndt and R. J. Cadoret, Clozapine and norclozapine plasma concentrations and clinical response of treatment-refractory schizophrenic patients, Am. J. Psychiatry 148 (1991) 231-235.Google Scholar

  • 31. O. V. Olesen, K. Thomsen, P. N. Jensen, C. Wulff, N. A. Rasmussen, C. Refshammer, J. Sørensen, M. Bysted, J. Christensen and R. Rosenberg, Clozapine serum levels and side effects during steady state treatment of schizophrenic patients: a cross-sectional study, Psychopharmacology 117 (1995) 371-378.Google Scholar

  • 32. D. J. Freeman and L. K. Oyewumi, Will routine therapeutic drug monitoring have a place in clozapine therapy?, Clin. Pharmacokinet. 32 (1997) 93-100.CrossrefPubMedGoogle Scholar

  • 33. S. K. Lin, S. F. Su and C. Pan, Higher plasma drug concentration in clozapine-treated schizophrenic patients with side effects of obsessive/compulsive symptoms, Ther. Drug Monit. 28 (2006) 303-307.CrossrefGoogle Scholar

  • 34. M. van der Molen-Eijgenraam, J. T. Blanken-Meijs, M. Heeringa and A. C. van Grootheest, Delirium due to increase in clozapine level during an inflammatory reaction, Ned. Tijdschr. Geneeskd. 145 (2001) 427-430.Google Scholar

  • 35. J. A. Carrillo, A. G. Herraiz, S. I. Ramos and J. Benítez, Effects of caffeine withdrawal from the diet on the metabolism of clozapine in schizophrenic patients, J. Clin. Psychopharmacol. 18 (1998) 311-316.CrossrefGoogle Scholar

  • 36. V. Ozdemir, W. Kalow, P. Posner, E. J. Collins, J. L. Kennedy, B. K. Tang, L. J. Albers, C. Reist, R. Roy, W. Walkes and P. Afra, CYP1A2 activity as measured by a caffeine test predicts clozapine and active metabolite steady-state concentration in patients with schizophrenia, J. Clin. Psychopharmacol. 21 (2001) 398-407.CrossrefGoogle Scholar

  • 37. C. Hiemke, P. Baumann, N. Bergemann, A. Conca, O. Dietmaier, K. Egberts, M. Fric, M. Gerlach, C. Greiner, G. Gründer, E. Haen, U. Havemann-Reinecke, E. Jaquenoud Sirot, H. Kirchherr, G. Laux, U. C. Lutz , T. Messer, M. J. Müller, B. Pfuhlmann, B. Rambeck, P. Riederer, B. Schoppek, J. Stingl, M. Uhr, S. Ulrich, R. Waschgler and G. Zernig, AGNP Consensus Guidelines for Therapeutic Drug Monitoring in Psychiatry: Update 2011, Pharmacopsychiatry 44 (2011) 195-235; DOI: 10.1055/s-0031-1286287.CrossrefGoogle Scholar

  • 38. E. Ceskova, Would therapeutic drug monitoring improve adherence and efficaccy of treatment in schizophrenia?, Psychiat. Prax. 12 (2011) 166-178.Google Scholar

  • 39. K. Seto, J. Dumontet and M. H. Ensom, Risperidone in schizophrenia: is there a role for therapeutic drug monitoring?, Ther. Drug Monit. 33 (2011) 275-283; DOI: 10.1097/FTD.0b013e3182126d83.CrossrefGoogle Scholar

  • 40. E. Spina, A. Avenoso, G. Facciolà, M. Salemi, M. G. Scordo, M. Ancione, A. G. Madia and E. Perucca, Relationship between plasma risperidone and 9-hydroxyrisperidone concentrations and clinical response in patients with schizophrenia, Psychopharmacology 153 (2001) 238-243. Google Scholar

  • 41. J. K. Darby, D. J. Pasta, M. G. Wilson and J. Herbert, Long-term therapeutic drug monitoring of risperidone and olanzapine identifies altered steady-state pharmacokinetics: a clinical, twogroup, naturalistic study, Clin. Drug Invest. 28 (2008) 553-564.CrossrefGoogle Scholar

  • 42. L. Citrome, Oral paliperidone extended-release: chemistry, pharmacodynamics, pharmacokinetics and metabolism, clinical efficacy, safety and tolerability, Expert Opin. Drug Metab. Toxicol. 8 (2012) 873-888; DOI: 10.1517/17425255.2012.693160.CrossrefGoogle Scholar

  • 43. P. G. Janicak and E. A. Winans, Paliperidone ER: a review of the clinical trial data, Neuropsychiatr. Dis. Treat. 3 (2007) 869-897.Google Scholar

  • 44. K. K. Erickson-Ridout, J. Zhu and P. Lazarus, Olanzapine metabolism and the significance of UGT1A448V and UGT2B1067Y variants, Pharmacogenet. Genomics 21 (2011) 539-551; DOI: 10.1097/ FPC.0b013e328348c76b.CrossrefGoogle Scholar

  • 45. G. Gründer, C. Hiemke, M. Paulzen, T. Veselinovic and I. Vernaleken, Therapeutic plasma concentrations of antidepressants and antipsychotics: lessons from PET imaging, Pharmacopsychiatry 44 (2011) 236-248; DOI: 10.1055/s-0031-1286282.CrossrefGoogle Scholar

  • 46. O. Gefvert, M. Bergström, B. Långström, T. Lundberg, L. Lindström and R. Yates, Time course of central nervous dopamine-D2 and 5-HT2 receptor blockade and plasma drug concentration after discontinuation of quetiapine (Seroquet) in patients with schizophrenia, Psychopharmacology 135 (1998) 119-126.Google Scholar

  • 47. M. C. Mauri, A. Fiorentini and L. S. Volonteri, Quetiapine in acute psychosis and personality disorders during hospitalization: assessment of a therapeutic range, Eur. Neuropsychopharmacol. 14 (2004) 283-284.Google Scholar

  • 48. J. R. Fabre, L. Arvanitis, J. Pultz, V. M. Jones, J. B. Malick and V. B. Slotnick, ICI 204.636. a novel atypical antipsychotic: early indication of safety and efficacy in patients with chronic and subchronic schizophrenia, Clin. Ther. 17 (1995) 366-378.Google Scholar

  • 49. J. G. Small, S. R. M. Hirsch, L. A. Arvanitis, B. G. Miller and C. G. Link, Quetiapine in patients with schizophrenia: a high- and low-dose double blind comparison with placebo, Arch. Gen. Psych. 54 (1997) 549-557.CrossrefGoogle Scholar

  • 50. A. Sparshatt, D. Taylor, M. X. Patel and S. Kapur, Amisulpride - dose, plasma concentration, occupancy and response: implications for therapeutic drug monitoring, Acta Psychiatr. Scand. 120 (2009) 416-428; DOI: 10.1111/j.1600-0447.2009.01429.x.CrossrefGoogle Scholar

  • 51. M. J. Müller, B. Regenbogen, S. Härtter, F. X. Eich and C. Hiemke, Therapeutic drug monitoring for optimizing amisulpride therapy in patients with schizophrenia, J. Psychiatr. Res. 41 (2007) 673-679.CrossrefGoogle Scholar

  • 52. F. Vogel, R. Gansmüller, T. Leiblein, O. Dietmaier, H. Wassmuth, G. Gründer and C. Hiemke, The use of ziprasidone in clinical practice: analysis of pharmacokinetic and pharmacodynamic aspects from data of a drug monitoring survey, Eur. Psychiatry 24 (2009) 143-148; DOI: 10.1016/j. eurpsy.2008.09.003.CrossrefGoogle Scholar

  • 53. M. D. Cherma, M. Reis, S. Hägg, J. Ahlner and F. Bengtsson, Therapeutic drug monitoring of ziprasidone in a clinical treatment setting, Ther. Drug Monit. 30 (2008) 682-688; DOI: 10.1097/ FTD.0b013e31818ac8ba.CrossrefGoogle Scholar

  • 54. A. Sparshatt, D. Taylor, M. X. Patel and S. Kapur, A systematic review of aripiprazole-dose, plasma concentration, receptor occupancy, and response: implications for therapeutic drug monitoring, J. Clin. Psychiatry 71 (2010) 1447-1456; DOI: 10.4088/JCP.09r05060gre. CrossrefGoogle Scholar

About the article

Accepted: 2014-07-03

Published Online: 2014-12-20

Published in Print: 2014-12-01


Citation Information: Acta Pharmaceutica, ISSN (Online) 1846-9558, DOI: https://doi.org/10.2478/acph-2014-0036.

Export Citation

© by Milan Grundmann. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Fabiana Maria das Graças Corsi-Zuelli, Fernanda Brognara, Gustavo Fernando da Silva Quirino, Carlos Hiroji Hiroki, Rafael Sobrano Fais, Cristina Marta Del-Ben, Luis Ulloa, Helio Cesar Salgado, Alexandre Kanashiro, and Camila Marcelino Loureiro
Frontiers in Immunology, 2017, Volume 8
[2]
Stefano Aringhieri, Shivakumar Kolachalam, Claudio Gerace, Marco Carli, Valeria Verdesca, Maria Giulia Brunacci, Chiara Rossi, Chiara Ippolito, Anna Solini, Giovanni U. Corsini, and Marco Scarselli
European Neuropsychopharmacology, 2017, Volume 27, Number 4, Page 383
[3]
George N. Pairas, Fereniki Perperopoulou, Petros G. Tsoungas, and George Varvounis
ChemMedChem, 2017, Volume 12, Number 6, Page 408
[5]
Mahmoud Slim, Inmaculada Medina-Caliz, Andres Gonzalez-Jimenez, M. Rosario Cabello, Fermin Mayoral-Cleries, M. Isabel Lucena, and Raul J. Andrade
Drug Safety, 2016, Volume 39, Number 10, Page 925
[6]
Ivana Kacirova, Milan Grundmann, Petr Silhan, and Hana Brozmanova
Medicine, 2016, Volume 95, Number 9, Page e2881
[7]
Dan Li, Juan Zou, Pei-Shan Cai, Chao-Mei Xiong, and Jin-Lan Ruan
Journal of Pharmaceutical and Biomedical Analysis, 2016, Volume 125, Page 319
[8]
Marc De Meulder, Michael P Waldron, Linge Li, Marlking G Peay, Michael J Tingler, Bruce J Hidy, Tom Verhaeghe, and Rand G Jenkins
Bioanalysis, 2016, Volume 8, Number 8, Page 765
[9]
Edoardo Spina, Christoph Hiemke, and Jose de Leon
Expert Opinion on Drug Metabolism & Toxicology, 2016, Volume 12, Number 4, Page 407
[10]
Aziz Eftekhari, Yadollah Azarmi, Alireza Parvizpur, and Mohammad Ali Eghbal
Xenobiotica, 2016, Volume 46, Number 4, Page 369

Comments (0)

Please log in or register to comment.
Log in