Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year


IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
Online
ISSN
1846-9558
See all formats and pricing
More options …
Volume 65, Issue 1 (Mar 2015)

Issues

Formulation and characterization of solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsion of lornoxicam for transdermal delivery

Ümit Gönüllü
  • Istanbul University Faculty of Pharmacy Department of Pharmaceutical Technology, Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Melike Üner
  • Corresponding author
  • Istanbul University Faculty of Pharmacy Department of Pharmaceutical Technology, Istanbul, Turkey
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gülgün Yener
  • Istanbul University Faculty of Pharmacy Department of Pharmaceutical Technology, Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ecem Fatma Karaman
  • Istanbul University Faculty of Pharmacy Department of Pharmaceutical Technology, Istanbul, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zeynep Aydoğmuş
Published Online: 2015-03-11 | DOI: https://doi.org/10.1515/acph-2015-0009

Abstract

Solid lipid nanoparticles (SLN), nanostructured lipid carriers (NLC) and nanoemulsion (NE) of lornoxicam (LRX) were prepared for the treatment of painful and inflammatory conditions of the skin. Compritol® 888 ATO, Lanette® O and oleic acid were used as solid and liquid lipids. SLN, NLC and NE were found physically stable at various temperatures for 6 months. Case I diffusional drug release was detected as the dominant mechanism indicating Fickian drug diffusion from nanoparticles and nanoemulsion. The highest rate of drug penetration through rat skin was obtained with NE followed by NLC, SLN and a gel formulation. Nanoformulations significantly increased drug penetration through rat skin compared to the gel (p < 0.05). Thus, SLN, NLC and NE of LRX can be suggested for relieving painful and inflammatory conditions of the skin

Keywords: lornoxicam; solid lipid nanoparticles; nanostructured lipid carriers; nanoemulsion; transdermal delivery; inflammation

References

  • 1. The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals (Ed. M. J. O’Neil), 14th ed., Merck Publishing Group, Merck & Co., Inc., Whitehouse Station 2006.Google Scholar

  • 2. D. S. P. Byrav, B. Medhi, A. Prakash, S. Patyar and S. Wadhwa, Lornoxicam: A newer NSAID, Indian J. Phys. Med. Rehabil. 20 (2009) 27-31.Google Scholar

  • 3. F. B. Riecke, E. M. Bartels, S. Torp-Pedersen, S. Ribel-Madsen, H. Bliddal, B. Danneskiold-Samsoe and L. Arendt-Nielsen, A microdialysis study of topically applied diclofenac to healthy humans: Passive versus iontophoretic delivery, Res. Pharm. Sci. 1 (2011) 76-79; DOI: 10.1016/j. rinphs.2011.11.001.CrossrefGoogle Scholar

  • 4. G. Yener, M. Uner, U. Gonullu, S. Yıldırım, P. Kılıc, S. Sağlık Aslan and A. Barla, Design of meloxicam and lornoxicam transdermal patches: Preparation, physical characterization, ex vivo and in vivo studies, Chem. Pharm. Bull. 58 (2010) 1466-1473; DOI: 10.1248/cpb.58.1466.Web of ScienceCrossrefGoogle Scholar

  • 5. M. Uner, Preparation, characterization and physico-chemical properties of solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Their benefits as colloidal drug carrier systems, Pharmazie 61 (2006) 375-386.Google Scholar

  • 6. M. Uner and G. Yener, Importance of solid lipid nanoparticles (SLN) in various administration routes and future perspectives, Int. J. Nanomed. 2 (2007) 289-300.Google Scholar

  • 7. S. A. Wissing, A. Lippacher and R. H. Muller, Investigations on the occlusive properties of solid lipid nanoparticles (SLN), J. Cosmet. Sci. 52 (2001) 313-324.Google Scholar

  • 8. H. Chen, X. Chang, D. Du, W. Liu, J. Liu, T. Weng, Y. Yang, H. Xu and X. Yang, Podophyllotoxinloaded solid lipid nanoparticles for epidermal targeting, J. Control. Release 110 (2006) 296-306; DOI: 10.1016/j.jconrel.2005.09.052.CrossrefGoogle Scholar

  • 9. C. Puglia, P. Blasi, L. Rizza, A. Schoubben, F. Bonina, C. Rossi and M. Ricci, Lipid nanoparticles for prolonged topical delivery: An in vitro and in vivo investigation, Int. J. Pharm. 357 (2008) 295-304; DOI: 10.1016/j.ij pharm.2008.01.045.CrossrefGoogle Scholar

  • 10. S. Kuchler, N. B. Wolf, S. Heilmann, G. Weindl, J. Helfmann, M. M. Yahya, C. Stein and M. Schafer- Korting, 3D-wound healing model: influence of morphine and solid lipid nanoparticles, J. Biotechnol. 148 (2010) 24-30; DOI: 10.1016/j.jbiotec.2010.01.001.Web of ScienceCrossrefGoogle Scholar

  • 11. V. Sanna, G. Caria and A. Mariani, Eff ect of lipid nanoparticles containing fa_ y alcohols having diff erent chain length on the ex vivo skin permeability of econazole nitrate, Powder Technol. 201 (2010) 32-36; DOI: 10.1016/j.powtec.2010.02.035. CrossrefWeb of ScienceGoogle Scholar

  • 12. E. B. Souto, C. Anselmi, M. Centini and R. H. Muller, Preparation and characterization of n-dodecyl- ferulate-loaded solid lipid nanoparticles (SLNR), Int. J. Pharm. 295 (2005) 261-268; DOI: 10.1016/j.ij pharm.2005.02.005.CrossrefGoogle Scholar

  • 13. M. Ghadiri, S. Fatemi, A. Vatanara, D. Doroud, A. R. Najafabadi, M. Darabi and A. A. Rahimi, Loading hydrophilic drug in solid lipid media as nanoparticles: Statistical modeling of entrapment effi ciency and particle size, Int. J. Pharm. 424 (2012) 128-137; DOI: 10.1016/j.ij pharm.2011.12.037.CrossrefWeb of ScienceGoogle Scholar

  • 14. Y. C. Kuo and H. H. Chen, Entrapment and release of saquinavir using novel cationic solid lipid nanoparticles, Int. J. Pharm. 365 (2009) 206-213; DOI: 10.1016/j.ij pharm.2008.08.050.CrossrefWeb of ScienceGoogle Scholar

  • 15. O. W. Sto_ , A. C. Williams and B. W. Barry, Transdermal delivery from eutectic systems: enhanced permeation of a model drug, ibuprofen, J. Control. Release 50 (1998) 297-308; DOI: 10.1016/S0168-3659(97)00153-3.CrossrefGoogle Scholar

  • 16. J. L. Ford and P. Timmins, Pharmaceutical Thermal Analysis, Ellis Horwood, Chichester 1989.Google Scholar

  • 17. B. Siekmann and K. Westesen, Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles, Colloids Surf., B. Biointerfaces 3 (1994) 159-175; DOI: 10.1016/0927-7765(94)80063-4.CrossrefGoogle Scholar

  • 18. J. Pardeike, S. Webera, T. Haber, J. Wagner, H. P. Zarfl , H. Plank and A. Zimmer, Development of an itraconazole-loaded nanostructured lipid carrier (NLC) formulation for pulmonary application, Int. J. Pharm. 419 (2011) 329-338; DOI: 10.1016/j.ij pharm.2011.07.040.CrossrefGoogle Scholar

  • 19. D. Z. Hou, C. S. Xie, K. J. Huang and C. H. Zhu, The production and characteristics of solid-lipid nanoparticles (SLNs), Biomaterials 34 (2003) 1781-1785; DOI: 10.1016/S0142-9612(02)00578-1.CrossrefGoogle Scholar

  • 20. S. Das, W. K. Ng and R. B. H. Tan, Are nanostructured lipid carriers (NLCs) be_ er that solid lipid nanoparticles (SLNs): Development, characterizations and comparative evaluations of clotrimazole- loaded SLNs and NLCs?, Eur. J. Pharm. Sci. 47 (2012) 139-151; DOI: 10.1016/j.ejps.2012.05.010.Web of ScienceCrossrefGoogle Scholar

  • 21. P. Costa and J. M. Sousa Lobo, Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci. 13 (2001) 123-133; DOI: 10.1016/S0928-0987(01)00095-1.CrossrefGoogle Scholar

  • 22. R. W. Korsmeyer, R. Gurney, E. M. Doelker, P. Buri and N. A. Peppas, Mechanism of solute release from porous hydrophilic polymers, Int. J. Pharm. 15 (1983) 25-35. DOI: 10.1016/0378-5173(83)90064-9.CrossrefGoogle Scholar

  • 23. J. Y. Fang, C. L. Fang, C. H. Liu and Y. H. Su, Lipid nanoparticles as vehicles for topical psoralen delivery: Solid lipid nanoparticles (SLN) versus nanostructured lipid carriers (NLC), Eur. J. Pharm. Biopharm. 70 (2008) 633-640; DOI: 10.1016/j.ejpb.2008.05.008.Web of ScienceCrossrefGoogle Scholar

  • 24. M. Joshi and V. Patravale, Nanostructured lipid carrier (NLC) based gel of celecoxib, Int. J. Pharm. 346 (2008) 124-132; DOI: 10.1016/j.ij pharm.2007.05.060.CrossrefWeb of ScienceGoogle Scholar

  • 25. A. Zur Muhlen, C. Schwarz and W. Mehnert, Solid lipid nanoparticles (SLN) for controlled drug delivery - Drug release and release mechanism, Eur. J. Pharm. Biopharm. 45 (1998) 149-155; DOI: 10.1016/S0939-6411(97)00150-1.CrossrefGoogle Scholar

  • 26. K. Bhaskar, J. Anbu, V. Ravichandiran, V. Venkatesvarlu and Y. M. Rao, Lipid nanoparticles for transdermal delivery of flurbiprofen: formulation, in vitro, ex vivo and in vivo studies, Lipids Health Dis. 8 (2009) 1-15; DOI: 10.1186/1476-511X-8-6.CrossrefWeb of ScienceGoogle Scholar

  • 27. S. K. Jain, M. K. Chourasia, R. Masuriha, V. Soni, A. Jain, N. K. Jain and Y. Gupta, Solid lipid nanoparticles bearing flurbiprofen for transdermal delivery, Drug Deliv. 12 (2005) 207-215; DOI: 10.1080/10717540590952591. CrossrefGoogle Scholar

About the article

Received: 2014-10-23

Published Online: 2015-03-11

Published in Print: 2015-03-01


Citation Information: Acta Pharmaceutica, ISSN (Online) 1846-9558, DOI: https://doi.org/10.1515/acph-2015-0009.

Export Citation

© by Melike Üner. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sumit Ashok Joshi, Sunil Satyappa Jalalpure, Amolkumar Ashok Kempwade, and Malleswara Rao Peram
Journal of Drug Delivery Science and Technology, 2017
[2]
Reham F. El-Kased, Reham I. Amer, Dalia Attia, and M. M. Elmazar
Scientific Reports, 2017, Volume 7, Number 1
[3]
Elwira Lasoń, Elżbieta Sikora, Małgorzata Miastkowska, Paulina Socha, and Jan Ogonowski
Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017
[4]
Qianwen Li, Tiange Cai, Yinghong Huang, Xi Xia, Susan Cole, and Yu Cai
Nanomaterials, 2017, Volume 7, Number 6, Page 122
[5]
Dawei Guo, Dandan Dou, Xinyu Li, Qian Zhang, Zohaib Ahmed Bhutto, and Liping Wang
Artificial Cells, Nanomedicine, and Biotechnology, 2017, Page 1
[6]
Vikram Kaithwas, Chander Parkash Dora, Varun Kushwah, and Sanyog Jain
Colloids and Surfaces B: Biointerfaces, 2017, Volume 154, Page 10
[7]
Arti Vashist, Ajeet Kaushik, Atul Vashist, Rahul Dev Jayant, Asahi Tomitaka, Sharif Ahmad, Y. K. Gupta, and Madhavan Nair
Biomater. Sci., 2016, Volume 4, Number 11, Page 1535
[8]
Vivek M. Ghate, Shaila A. Lewis, Prabhakara Prabhu, Akhilesh Dubey, and Nilkumar Patel
European Journal of Pharmaceutics and Biopharmaceutics, 2016, Volume 108, Page 253
[9]
Ana Beloqui, María Ángeles Solinís, Alicia Rodríguez-Gascón, António J. Almeida, and Véronique Préat
Nanomedicine: Nanotechnology, Biology and Medicine, 2016, Volume 12, Number 1, Page 143

Comments (0)

Please log in or register to comment.
Log in