Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year


IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
Online
ISSN
1846-9558
See all formats and pricing
More options …
Volume 65, Issue 4 (Dec 2015)

Issues

Induction of cell cycle arrest via the p21, p27–cyclin E,A/Cdk2 pathway in SMMC-7721 hepatoma cells by clioquinol

Zhiwei Huang
  • Corresponding author
  • Key Lab of Eco-Textile (Ministry of Education), College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620, China
  • Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lianqiu Wang
  • Key Lab of Eco-Textile (Ministry of Education), College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lifeng Chen
  • Key Lab of Eco-Textile (Ministry of Education), College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620, China
  • State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yifei Zhang
  • State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ping Shi
  • State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-17 | DOI: https://doi.org/10.1515/acph-2015-0034

Abstract

Clioquinol has been shown to have anticancer activity in several carcinoma cells. In this study, we preliminarily examined the effect of clioquinol in human SMMC-7721 hepatoma and QSG-7701 normal hepatic cells. Our results indicated that clioquinol did not significantly affect survival of QSG-7701 cells, whereas it reduced cell viability in a concentration- and time-dependent manner in SMMC-7721 cells. Clioquinol did not trigger autophagy and apoptosis, while it induced cell cycle arrest in the S-phase in SMMC- 7721 cells. Additionally, down-regulation of cyclin D1, A2, E1, Cdk2 and up-regulation of p21, p27 were detected after the treatment with clioquinol. The results demonstrated for the first time that clioquinol suppressed cell cycle progression in the S-phase in SMMC-7721 cells via the p21, p27-cyclin E,A/Cdk2 pathway. This suggests that clioquinol may have a therapeutic potential as an anticancer drug for certain malignances.

Keywords: clioquinol; human SMMC-7721 hepatoma cells; cell cycle S-phase arrest; cyclin E/A-Cdk2

References

  • 1. L. Cahoon, The curious case of clioquinol, Nat. Med. 15 (2009) 356-359; DOI: 10.1038/nm0409-356.CrossrefGoogle Scholar

  • 2. J. Tateishi, Subacute myelo-optico-neuropathy: clioquinol intoxication in humans and animals, Neuropathology 20 (2000) S20-S24; DOI: 10.1046/j.1440-1789.2000.00296.x.CrossrefGoogle Scholar

  • 3. T. Tsubaki, Y. Honma and M. Hoshi, Neurological syndrome associated with clioquinol, Lancet 1 (1971) 696-697.Google Scholar

  • 4. L. Helmuth, Neuroscience. An antibiotic to treat Alzheimer’s? Science 290 (2000) 1273-1274; DOI: 10.1126/science.290.5495.1273a.CrossrefGoogle Scholar

  • 5. X. Mao and A. D. Schimmer, The toxicology of clioquinol, Toxicol. Lett. 182 (2008) 1-6; DOI: 10.1016/j.toxlet.2008.08.015.CrossrefWeb of ScienceGoogle Scholar

  • 6. M. H. Park, S. J. Lee, H. R. Byun, Y. Kim, Y. J. Oh, J. Y. Koh and J. J. Hwang, Clioquinol induces autophagy in cultured astrocytes and neurons by acting as a zinc ionophore, Neurobiol. Dis. 42 (2011) 242-251; DOI: 10.1016/j.nbd.2011.01.009.Web of ScienceCrossrefGoogle Scholar

  • 7. S. R. Bareggi and U. Cornelli, Clioquinol: review of its mechanisms of action and clinical uses in neurodegenerative disorders, CNS Neurosci. Ther. 18 (2012) 41-46; DOI: 10.1111/j.1755-5949.2010. 00231.x.Web of ScienceCrossrefGoogle Scholar

  • 8. K. G. Daniel, D. Chen, S. Orlu, Q. C. Cui, F. R. Miller and Q. P. Dou, Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteosome inhibitors and apoptosis inducers in human breast cancer cells, Breast Cancer Res. 7 (2005) 897-908; DOI: 10.1186/bcr1322.CrossrefGoogle Scholar

  • 9. T. Du, G. Filiz, A. Caragounis, P. J. Crouch and A. R. White, Clioquinol promotes cancer cell toxicity through tumor necrosis factor alpha release from macrophages, J. Pharmacol. Exp. Ther. 324 (2008) 360-367; DOI: 10.1124/jpet.107.130377.Web of ScienceCrossrefGoogle Scholar

  • 10. M. W. Lee, P. C. Lin and W. C. Tsai, The anti-cancer effects of clioquinol on oral cancer, EACR-23 Poster Sessions/Eur. J. Cancer 50 (2014) S42.Google Scholar

  • 11. O. Afzal, S. Kumar, M. R. Haider, M. R. Ali, R. Kumar, M. Jaggi and S. Baw, A review on anticancer potential of bioactive heterocycle quinolone, Eur. J. Med. Chem. 97 (2015) 871-910; DOI: 10.1016/j. ejmech.2014.07.044.CrossrefGoogle Scholar

  • 12. W . Q. Ding, B. Liu, J. L. Vaught, H. Yamauchi and S. E. Lind, Anti-cancer activity of the antibiotic clioquinol, Cancer Res. 65 (2005) 3389-3395; DOI: 10.1158/0008-5472.CAN-04 -3577.CrossrefGoogle Scholar

  • 13. X. Mao, X. Li, R. Sprangers, X. Wang, A. Venugopal, T. Wood, Y. Zhang, D. A. Kuntz, E. Coe, S. Trudel, D. Rose, R. A. Batey, L. E. Kay and A. D. Schimmer, Clioquinol inhibits the proteasome and displays preclinical activity in leukemia and myeloma, Leukemia 23 (2009) 585-590; DOI: 10.1038/leu.2008.232.CrossrefWeb of ScienceGoogle Scholar

  • 14. A. D. Schimmer, Y. Jitkova, M. Gronda, Z. Wang, J. Brandwein, C. Chen, V. Gupta, A. Schuh, K. Yee, J. Chen, S. Ackloo, T. Booth, S. Keays and M. D. Minden, A Phase I study of the metal ionophore clioquinol in patients with advanced hematologic malignancies, Clin. Lymphoma Myeloma Leuk. 12 (2012) 330-336; DOI: 10.1016/j.clml.2012.05.005.CrossrefWeb of ScienceGoogle Scholar

  • 15. T. Kanzawa, Y. Kondo, H. Ito, S. Kondo and I. Germano, Induction of autophagic cell death in malignant glioma cells by arsenic trioxide, Cancer Res. 63 (2003) 2103-2108.Google Scholar

  • 16. K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2-delta delta CT method, Methods 52 (2001) 402-408; DOI: 10.1006/ meth.2001.1262.CrossrefGoogle Scholar

  • 17. H. Yu, Y. Zhou, S. E. Lind and W. Q. Ding, Clioquinol targets zinc to lysosomes in human cancer cells, Biochem. J. 417 (2009) 133-139; DOI: 10.1042/BJ20081421.Web of ScienceCrossrefGoogle Scholar

  • 18. H. Yu, J. R. Lou and W. Q. Ding, Clioquinol independently targets NF kappa B and lysosome pathways in human cancer cells, Anticancer Res. 30 (2010) 2087-2092.Google Scholar

  • 19. D. Chen, Q. C. Cui, H. Yang, R. A. Barrea, F. H. Sarkar, S. Sheng, B. Yan, G. P. Reddy and Q. P. Dou, Clioquinol, a therapeutic agent for Alzheimer’s disease, has proteasome-inhibitory, androgen receptor-suppressing, apoptosis-inducing, and antitumor activities in human prostate cancer cells and xenografts, Cancer Res. 67 (2007) 1636-1644; DOI: 10.1158/0008-5472. CAN -06-3546.Web of ScienceCrossrefGoogle Scholar

  • 20. M. A. Cater and Y. Haupt, Clioquinol induces cytoplasmic clearance of the X-linked inhibitor of apoptosis protein (XIAP): therapeutic indication for prostate cancer, Biochem. J. 436 (2011) 481-491; DOI: 10.1042/BJ20110123.CrossrefWeb of ScienceGoogle Scholar

  • 21. M. Katsuyama, K. Iwata, M. Ibi, K. Matsunob, M. Matsumotob and C. Yabe-Nishimura, Clioquinol induces DNA double-strand breaks, activation of ATM, and subsequent activation of p53 signaling, Toxicology 299 (2012) 55-59; DOI: 10.1016/j.tox.2012.05.013.Web of ScienceCrossrefGoogle Scholar

  • 22. C. Laezza, S. Pisanti, E. Crescenzi and M. Bifulco, Anandamide inhibits Cdk2 and activates Chk1 leading to cell cycle arrest in human breast cancer cells, FEBS Lett. 580 (2006) 6076-6082; DOI:10.1016/j.febslet.2006.09.074.CrossrefGoogle Scholar

  • 23. E. J. Yeo, J. H. Ryu, Y. S. Chun, Y. S. Cho, I. J. Jang, H. Cho, J. Kim, M. S. Kim and J. W. Park, YC-1 induces S cell cycle arrest and apoptosis by activating checkpoint kinases, Cancer Res. 66 (2006) 6345-6352; DOI: 10.1158/0008-5472.CAN-05-4460. Google Scholar

About the article

Accepted: 2015-07-14

Published Online: 2015-12-17

Published in Print: 2015-12-01


Citation Information: Acta Pharmaceutica, ISSN (Online) 1846-9558, DOI: https://doi.org/10.1515/acph-2015-0034.

Export Citation

© by Zhiwei Huang. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in