Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year


IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
Online
ISSN
1846-9558
See all formats and pricing
More options …
Volume 65, Issue 4

Issues

Induction of cell cycle arrest via the p21, p27–cyclin E,A/Cdk2 pathway in SMMC-7721 hepatoma cells by clioquinol

Zhiwei Huang
  • Corresponding author
  • Key Lab of Eco-Textile (Ministry of Education), College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620, China
  • Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lianqiu Wang
  • Key Lab of Eco-Textile (Ministry of Education), College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lifeng Chen
  • Key Lab of Eco-Textile (Ministry of Education), College of Chemistry Chemical Engineering and Biotechnology Donghua University Shanghai 201620, China
  • State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yifei Zhang
  • State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ping Shi
  • State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology Shanghai 200237, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-17 | DOI: https://doi.org/10.1515/acph-2015-0034

Abstract

Clioquinol has been shown to have anticancer activity in several carcinoma cells. In this study, we preliminarily examined the effect of clioquinol in human SMMC-7721 hepatoma and QSG-7701 normal hepatic cells. Our results indicated that clioquinol did not significantly affect survival of QSG-7701 cells, whereas it reduced cell viability in a concentration- and time-dependent manner in SMMC-7721 cells. Clioquinol did not trigger autophagy and apoptosis, while it induced cell cycle arrest in the S-phase in SMMC- 7721 cells. Additionally, down-regulation of cyclin D1, A2, E1, Cdk2 and up-regulation of p21, p27 were detected after the treatment with clioquinol. The results demonstrated for the first time that clioquinol suppressed cell cycle progression in the S-phase in SMMC-7721 cells via the p21, p27-cyclin E,A/Cdk2 pathway. This suggests that clioquinol may have a therapeutic potential as an anticancer drug for certain malignances.

Keywords: clioquinol; human SMMC-7721 hepatoma cells; cell cycle S-phase arrest; cyclin E/A-Cdk2

References

  • 1. L. Cahoon, The curious case of clioquinol, Nat. Med. 15 (2009) 356-359; DOI: 10.1038/nm0409-356.CrossrefGoogle Scholar

  • 2. J. Tateishi, Subacute myelo-optico-neuropathy: clioquinol intoxication in humans and animals, Neuropathology 20 (2000) S20-S24; DOI: 10.1046/j.1440-1789.2000.00296.x.CrossrefGoogle Scholar

  • 3. T. Tsubaki, Y. Honma and M. Hoshi, Neurological syndrome associated with clioquinol, Lancet 1 (1971) 696-697.Google Scholar

  • 4. L. Helmuth, Neuroscience. An antibiotic to treat Alzheimer’s? Science 290 (2000) 1273-1274; DOI: 10.1126/science.290.5495.1273a.CrossrefGoogle Scholar

  • 5. X. Mao and A. D. Schimmer, The toxicology of clioquinol, Toxicol. Lett. 182 (2008) 1-6; DOI: 10.1016/j.toxlet.2008.08.015.CrossrefWeb of ScienceGoogle Scholar

  • 6. M. H. Park, S. J. Lee, H. R. Byun, Y. Kim, Y. J. Oh, J. Y. Koh and J. J. Hwang, Clioquinol induces autophagy in cultured astrocytes and neurons by acting as a zinc ionophore, Neurobiol. Dis. 42 (2011) 242-251; DOI: 10.1016/j.nbd.2011.01.009.Web of ScienceCrossrefGoogle Scholar

  • 7. S. R. Bareggi and U. Cornelli, Clioquinol: review of its mechanisms of action and clinical uses in neurodegenerative disorders, CNS Neurosci. Ther. 18 (2012) 41-46; DOI: 10.1111/j.1755-5949.2010. 00231.x.Web of ScienceCrossrefGoogle Scholar

  • 8. K. G. Daniel, D. Chen, S. Orlu, Q. C. Cui, F. R. Miller and Q. P. Dou, Clioquinol and pyrrolidine dithiocarbamate complex with copper to form proteosome inhibitors and apoptosis inducers in human breast cancer cells, Breast Cancer Res. 7 (2005) 897-908; DOI: 10.1186/bcr1322.CrossrefGoogle Scholar

  • 9. T. Du, G. Filiz, A. Caragounis, P. J. Crouch and A. R. White, Clioquinol promotes cancer cell toxicity through tumor necrosis factor alpha release from macrophages, J. Pharmacol. Exp. Ther. 324 (2008) 360-367; DOI: 10.1124/jpet.107.130377.Web of ScienceCrossrefGoogle Scholar

  • 10. M. W. Lee, P. C. Lin and W. C. Tsai, The anti-cancer effects of clioquinol on oral cancer, EACR-23 Poster Sessions/Eur. J. Cancer 50 (2014) S42.Google Scholar

  • 11. O. Afzal, S. Kumar, M. R. Haider, M. R. Ali, R. Kumar, M. Jaggi and S. Baw, A review on anticancer potential of bioactive heterocycle quinolone, Eur. J. Med. Chem. 97 (2015) 871-910; DOI: 10.1016/j. ejmech.2014.07.044.CrossrefGoogle Scholar

  • 12. W . Q. Ding, B. Liu, J. L. Vaught, H. Yamauchi and S. E. Lind, Anti-cancer activity of the antibiotic clioquinol, Cancer Res. 65 (2005) 3389-3395; DOI: 10.1158/0008-5472.CAN-04 -3577.CrossrefGoogle Scholar

  • 13. X. Mao, X. Li, R. Sprangers, X. Wang, A. Venugopal, T. Wood, Y. Zhang, D. A. Kuntz, E. Coe, S. Trudel, D. Rose, R. A. Batey, L. E. Kay and A. D. Schimmer, Clioquinol inhibits the proteasome and displays preclinical activity in leukemia and myeloma, Leukemia 23 (2009) 585-590; DOI: 10.1038/leu.2008.232.CrossrefWeb of ScienceGoogle Scholar

  • 14. A. D. Schimmer, Y. Jitkova, M. Gronda, Z. Wang, J. Brandwein, C. Chen, V. Gupta, A. Schuh, K. Yee, J. Chen, S. Ackloo, T. Booth, S. Keays and M. D. Minden, A Phase I study of the metal ionophore clioquinol in patients with advanced hematologic malignancies, Clin. Lymphoma Myeloma Leuk. 12 (2012) 330-336; DOI: 10.1016/j.clml.2012.05.005.CrossrefWeb of ScienceGoogle Scholar

  • 15. T. Kanzawa, Y. Kondo, H. Ito, S. Kondo and I. Germano, Induction of autophagic cell death in malignant glioma cells by arsenic trioxide, Cancer Res. 63 (2003) 2103-2108.Google Scholar

  • 16. K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2-delta delta CT method, Methods 52 (2001) 402-408; DOI: 10.1006/ meth.2001.1262.CrossrefGoogle Scholar

  • 17. H. Yu, Y. Zhou, S. E. Lind and W. Q. Ding, Clioquinol targets zinc to lysosomes in human cancer cells, Biochem. J. 417 (2009) 133-139; DOI: 10.1042/BJ20081421.Web of ScienceCrossrefGoogle Scholar

  • 18. H. Yu, J. R. Lou and W. Q. Ding, Clioquinol independently targets NF kappa B and lysosome pathways in human cancer cells, Anticancer Res. 30 (2010) 2087-2092.Google Scholar

  • 19. D. Chen, Q. C. Cui, H. Yang, R. A. Barrea, F. H. Sarkar, S. Sheng, B. Yan, G. P. Reddy and Q. P. Dou, Clioquinol, a therapeutic agent for Alzheimer’s disease, has proteasome-inhibitory, androgen receptor-suppressing, apoptosis-inducing, and antitumor activities in human prostate cancer cells and xenografts, Cancer Res. 67 (2007) 1636-1644; DOI: 10.1158/0008-5472. CAN -06-3546.Web of ScienceCrossrefGoogle Scholar

  • 20. M. A. Cater and Y. Haupt, Clioquinol induces cytoplasmic clearance of the X-linked inhibitor of apoptosis protein (XIAP): therapeutic indication for prostate cancer, Biochem. J. 436 (2011) 481-491; DOI: 10.1042/BJ20110123.CrossrefWeb of ScienceGoogle Scholar

  • 21. M. Katsuyama, K. Iwata, M. Ibi, K. Matsunob, M. Matsumotob and C. Yabe-Nishimura, Clioquinol induces DNA double-strand breaks, activation of ATM, and subsequent activation of p53 signaling, Toxicology 299 (2012) 55-59; DOI: 10.1016/j.tox.2012.05.013.Web of ScienceCrossrefGoogle Scholar

  • 22. C. Laezza, S. Pisanti, E. Crescenzi and M. Bifulco, Anandamide inhibits Cdk2 and activates Chk1 leading to cell cycle arrest in human breast cancer cells, FEBS Lett. 580 (2006) 6076-6082; DOI:10.1016/j.febslet.2006.09.074.CrossrefGoogle Scholar

  • 23. E. J. Yeo, J. H. Ryu, Y. S. Chun, Y. S. Cho, I. J. Jang, H. Cho, J. Kim, M. S. Kim and J. W. Park, YC-1 induces S cell cycle arrest and apoptosis by activating checkpoint kinases, Cancer Res. 66 (2006) 6345-6352; DOI: 10.1158/0008-5472.CAN-05-4460. Google Scholar

About the article

Accepted: 2015-07-14

Published Online: 2015-12-17

Published in Print: 2015-12-01


Citation Information: Acta Pharmaceutica, Volume 65, Issue 4, Pages 463–471, ISSN (Online) 1846-9558, DOI: https://doi.org/10.1515/acph-2015-0034.

Export Citation

© by Zhiwei Huang. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Zhanjiang Guan, Li Shen, Huan Liang, Haitao Yu, Bingchang Hei, Xianguo Meng, and Lei Yang
Molecular Medicine Reports, 2017, Volume 16, Number 2, Page 1653

Comments (0)

Please log in or register to comment.
Log in