Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year

IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
See all formats and pricing
More options …
Volume 66, Issue 2 (Jun 2016)


Release of selected amino acids from zinc carriers

Renata Dyja
  • Corresponding author
  • Department of Applied, Pharmacy and Drug Technology, Medical University of Silesia, 41-200 Sosnowiec, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Barbara Dolińska
  • Department of Applied, Pharmacy and Drug Technology, Medical University of Silesia, 41-200 Sosnowiec, Poland
  • Pharmaceutical Research and Product Plant »Biochefa«, 41-200 Sosnowiec, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Florian Ryszka
Published Online: 2016-05-28 | DOI: https://doi.org/10.1515/acph-2016-0024


The paper deals with the results of an investigation of the release of selected amino acids (histidine, tryptophan, tyrosine) from model suspensions prepared by co-precipitation with zinc chloride. It has been proven that the influence of the Zn(II)/amino acid molar ratio on dissolution profiles of the tested amino acids and dissolution half-life (t1/2) of histidine or tryptophan is significant. The amount of amino acid in the dispersed phase (supporting dose) is a determinant of the amino acid release profile. There is a minimal supporting dose (30.0 μmol of histidine or 17.4 μmol of tryptophan) that provides release of similar amounts of amino acid (4.1–4.6 μmol of histidine or 8.7–9.9 μmol of tryptophan) after the same time intervals. The tyrosine release profiles follow first order kinetics since the supporting dose (0.9–11.2 μmol) is limited by the tyrosine low solubility in water.

Keywords: amino acids; zinc; suspensions; dissolution; kinetics


  • 1. U. Gietz, T. Arvinte, M. Häner, U. Aebi and H. P. Merkle, Formulation of sustained release aqueous Zn-hirudin suspensions, Eur. J. Pharm. Sci. 11 (2000) 33–41; DOI: 10.1016/S0928-0987(00)00072-5.CrossrefGoogle Scholar

  • 2. K. Shi, F. Cui, H. Bi, Y. Jang, H. Shi and T. Song, Metal ions guided self-assembly of therapeutic proteins for controllable release: from random to ordered aggregation, Pharm. Res. 30 (2013) 269–279; DOI: 10.1007/s11095-012-0871-9.Web of ScienceCrossrefGoogle Scholar

  • 3. B. Dolińska and F. Ryszka, Pulsatile and moderated release of dalareline from Zn(II) complexes in the form of suspension, Boll. Chim. Farmac. 142 (2003) 10–13.Google Scholar

  • 4. T. Biswick, D. H. Park, Y. G. Shul, J. H. Choy, p-Coumaric acid-zinc basic salt nanohybrid for controlled release and sustained antioxidant activity, J. Phys. Chem. Solid. 71 (2010) 647–649; DOI: 10.1016/j.jpcs.2009.12.058.Web of ScienceCrossrefGoogle Scholar

  • 5. A. U. Kura, S. H. Hussein Al-Ali, M. Z. Hussein, S. Fakurazi and P. Arulselvan, Development of a controlled release anti-parkinsonian nanodelivery system using levodopa as the active agent, Int. J. Nanomed. 8 (2013) 1103–1110; DOI: 10.2147/IJN.S39740.CrossrefWeb of ScienceGoogle Scholar

  • 6. C. G. Carbajal Arízaga, Intercalation studies of zinc hydroxide chloride: ammonia and amino acids, J. Solid State Chem. 185 (2012) 150–155; DOI: 10.1016/j.jssc.2011.11.016.Web of ScienceCrossrefGoogle Scholar

  • 7. Á. Fudala, I. Pálinkó and I. Kiricsi, Preparation and characterization of hybrid organic-inorganic composite materials using the amphoteric property of amino acids: amino acid intercalated layered double hydroxide and montmorillonite, Inorg. Chem. 38 (1999) 4653–4658; DOI: 10.1021/ic981176t.CrossrefGoogle Scholar

  • 8. B. Dolińska and F. Ryszka, The influence of physicochemical properties of amino acids on their release from the Zn(II)-amino acid complexes in suspension, Boll. Chim. Farm. 141 (2002) 218–222.Google Scholar

  • 9. B. Dolińska, The properties of solid Zn(II)-amino acid complexes in the form of suspensions, Il Farmaco 56 (2001) 737–740.CrossrefGoogle Scholar

  • 10. S. Jose, J. F. Fangueiro, J. Smitha, T. A. Cinu, A. J. Chacko, K. Premaletha and E. B. Souto, Predictive modeling of insulin release profile from cross-linked chitosan microspheres, Eur. J. Med. Chem. 60 (2013) 249–253; DOI: 10.1016/j.ejmech.2012.12.011.CrossrefWeb of ScienceGoogle Scholar

  • 11. P. Costa and J. M. Sousa Lobo, Modeling and comparison of dissolution profiles, Eur. J. Pharm. Sci. 13 (2001) 123–133; DOI: 10.1016/S0928-0987(01)00095-1.CrossrefGoogle Scholar

About the article

Accepted: 2016-02-16

Published Online: 2016-05-28

Published in Print: 2016-06-01

Citation Information: Acta Pharmaceutica, ISSN (Online) 1846-9558, DOI: https://doi.org/10.1515/acph-2016-0024.

Export Citation

© 2016 Renata Dyja et al., published by De Gruyter Open. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Comments (0)

Please log in or register to comment.
Log in