Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year


IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
Online
ISSN
1846-9558
See all formats and pricing
More options …
Volume 66, Issue 3 (Sep 2016)

Issues

A study of compressibility and compactibility of directly compressible tableting materials containing tramadol hydrochloride

Jitka Mužíková
  • Department of Pharmaceutical Technology Charles University in Prague Faculty of Pharmacy in Hradec Králové Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alena Kubíčková
  • Department of Pharmaceutical Technology Charles University in Prague Faculty of Pharmacy in Hradec Králové Czech Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-06-29 | DOI: https://doi.org/10.1515/acph-2016-0034

Abstract

The paper evaluates and compares the compressibility and compactibility of directly compressible tableting materials for the preparation of hydrophilic gel matrix tablets containing tramadol hydrochloride and the coprocessed dry binders Prosolv® SMCC 90 and Disintequik™ MCC 25. The selected types of hypromellose are Methocel™ Premium K4M and Methocel™ Premium K100M in 30 and 50 % concentrations, the lubricant being magnesium stearate in a 1 % concentration. Compressibility is evaluated by means of the energy profile of compression process and compactibility by the tensile strength of tablets. The values of total energy of compression and plasticity were higher in the tableting materials containing Prosolv® SMCC 90 than in those containing Disintequik™ MCC 25. Tramadol slightly decreased the values of total energy of compression and plasticity. Tableting materials containing Prosolv® SMCC 90 yielded stronger tablets. Tramadol decreased the strength of tablets from both coprocessed dry binders.

Keywords: tramadol hydrochloride; hydrophilic matrix tablets; coprocessed dry binder; hypromellose; energy profile of compression; tensile strength of tablets

References

  • 1. P. Colombo, P. Santi et al., Swellable and Rigid Matrices: Controlled Release Matrices with Cellulose Ethers, in Pharmaceutical Dosage Forms: Tablets (Eds. L. L. Augsburger, S. W. Hoag), Informa Healthcare USA, Inc., New York 2008, pp. 433-468.Google Scholar

  • 2. B. A. C. Carlin, Direct Compression and the Role of Filler Binders, in Pharmaceutical Dosage Forms: Tablets (Eds. L. L. Augsburger and S. W. Hoag), 3th ed., Vol. 2, Informa Healthcare USA, Inc., New York 2008, pp. 173-216.Google Scholar

  • 3. P. Gupta, S. T. Nachaegari and A. K. Bansal, Improved Excipients Functionality by Coprocessing, in Excipient Development for Pharmaceutical, Biotechnology and Drug Delivery Systems (Eds. A. Katdare, M. V. Chaubal), Informa Healthcare USA, Inc., New York 2006, pp. 109-126.Google Scholar

  • 4. S. Kamel, N. Ali, K. Jahangir, S. M. Shah and A. A. El-Gendy, Pharmaceutical significance of cellulose: A Review, xXPRESS Polymer Letters 2 (2008) 758-778; DOI: 10.3144/expresspolymlett.2008.90.CrossrefGoogle Scholar

  • 5. K. Kachrimanis, I. Nikolakakis and S. Malamataris, Tensile strength and disintegration of tableted silicified microcrystalline cellulose: Influences of interparticle bonding, J. Pharm. Sci. 92 (2003) 1489-1501; DOI: 10.1002/jps.10403.CrossrefGoogle Scholar

  • 6. J. A. Zeleznik and J. Renak, High Functionality Excipients (HFE) - PROSOLV® SMCC as an effective strategy for generic drug formulation, Business Briefing, Pharmagenerics, (2004) 1-4.Google Scholar

  • 7. B. E. Sherwood and J. W. Becker, A new class of high-functionality excipients: Silicified microcrystalline cellulose, Pharm. Tech. 22 (1998) 77-88.Google Scholar

  • 8. KERRY, Disintequik™ MCC 25, Product document; http://www.sheffieldbioscience.com/disintequik_MCC25/; access date March 28, 2015.Google Scholar

  • 9. J. S. M. Garr and M. H. Rubinstein, Compaction properties of cellulose-lactose direct-compression excipient, Pharm. Technol. Int. 3 (1991) 24-27.Google Scholar

  • 10. R. J. Hardwood, Hydroxypropyl Methylcellulose, in Handbook of Pharmaceutical Excipients (Eds. A. H. Kibe, A. Wade et al.), American Pharmaceutical Association and Pharmaceutical Press, Washington 2000, pp. 252-255.Google Scholar

  • 11. G. Ragnarsson, Force-displacement and Network Measurements, in Pharmaceutical Powder Compaction Technology (Eds. G. Alderborn and Ch. Nyström), Marcel Dekker Inc., New York 1996, pp. 77-96.Google Scholar

  • 12. A. Stamm and C. Mathis, Verpressbarkeit von festen Hilfsstoffen für Direkttablettierung, Acta Pharm. Technol. 22 (1976) 7-16.Google Scholar

  • 13. J. T. Fell and J. M. Newton, Determination of tablet strength by diametral compression test, J. Pharm. Sci. 59 (1970) 688-691; DOI: 10.1002/jps.2600590523.CrossrefGoogle Scholar

  • 14. V. A. Belousov, Choice of optimal pressure values in tableting medicinal powders, Khim. Farm. Zh. 10 (1976) 105-111.Google Scholar

About the article

Accepted: 2016-01-11

Published Online: 2016-06-29

Published in Print: 2016-09-01


Citation Information: Acta Pharmaceutica, ISSN (Online) 1846-9558, DOI: https://doi.org/10.1515/acph-2016-0034.

Export Citation

© by Jitka Mužíková. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in