Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Pharmaceutica

The Journal of Croatian Pharmaceutical Society

4 Issues per year

IMPACT FACTOR 2016: 1.288
5-year IMPACT FACTOR: 1.600

CiteScore 2016: 1.55

SCImago Journal Rank (SJR) 2016: 0.353
Source Normalized Impact per Paper (SNIP) 2016: 0.854

Open Access
See all formats and pricing
More options …
Volume 66, Issue 4


Ionophore-based potentiometric PVC membrane sensors for determination of phenobarbitone in pharmaceutical formulations

Haitham Alrabiah
  • Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, P.O.Box, 2457, Riyadh 11451, Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abdulrahman Al-Majed
  • Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, P.O.Box, 2457, Riyadh 11451, Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammed Abounassif
  • Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, P.O.Box, 2457, Riyadh 11451, Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gamal A.E. Mostafa
  • Corresponding author
  • Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, P.O.Box, 2457, Riyadh 11451, Saudi Arabia Egypt
  • Micro-Analytical Laboratory, Applied Organic Chemistry Department, National Research Center, Doki, Cairo, Egypt
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-15 | DOI: https://doi.org/10.1515/acph-2016-0042


The fabrication and development of two polyvinyl chloride (PVC) membrane sensors for assaying phenobarbitone sodium are described. Sensors 1 and 2 were fabricated utilizing β- or γ-cyclodextrin as ionophore in the presence of tridodecylmethylammonium chloride as a membrane additive, and PVC and dioctyl phthalate as plasticizer. The analytical parameters of both sensors were evaluated according to the IUPAC guidelines. The proposed sensors showed rapid, stable anionic response (-59.1 and -62.0 mV per decade) over a relatively wide phenobarbitone concentration range (5.0 × 10-6-1 × 10-2 and 8 × 10-6-1 × 10-2 mol L-1) in the pH range of 9-11. The limit of detection was 3.5 × 10-6 and 7.0 × 10-6 mol L-1 for sensors 1 and 2, respectively. The fabricated sensors showed high selectivity for phenobarbitone over the investigated foreign species. An average recovery of 2.54 μg mL-1 phenobarbitone sodium was 97.4 and 101.1 %, while the mean relative standard deviation was 3.0 and 2.1 %, for sensors 1 and 2, respectively. The results acquired for determination of phenobarbitone in its dosage forms utilizing the proposed sensors are in good agreement with those obtained by the British Pharmacopoeial method.

Keywords: phenobarbitone sodium; membrane selective electrode; β-cyclodextrin; γ-cyclodextrin; PVC; potentiometry


  • 1. Martindale: The Complete Drug Reference, 32nd ed. (Ed. K. Parfitt), Pharmaceutical Press, London 1999.Google Scholar

  • 2. N. B. Ilangaratne, N. N. Mannakkara, G. S. Bell and J. W. Sander, Phenobarbital: missing in action, Bull.World Health Org. 90 (2012) 871A-871A; DOI: 10.2471/BLT.12.113183.CrossrefGoogle Scholar

  • 3. M. J. Brodie and P. Kwan, Current position of phenobarbital in epilepsy and its future, Epilepsia 53 (2012) 40-46; DOI: 10.1111/epi.12027.Web of ScienceCrossrefGoogle Scholar

  • 4. A. El-Gindy, HPLC and chemometric assisted spectrophotometric methods for simultaneous determination of diprophylline, phenobarbitone and papaverine hydrochloride, Farmaco 60 (2005) 745-753; DOI: 10.1016/j.farmac.2005.06.002.CrossrefGoogle Scholar

  • 5. X. Li, L. Niu, X. He and Z. Song, Determination of phenobarbital in human urine and serum using flow injection chemiluminescence, Biochemistry (Moscow) Suppl. Series B: Biomed. Chem. 5 (2011) 184-187; DOI: 10.1134/S1990750811020077.CrossrefGoogle Scholar

  • 6. C. M. Monzón, M. R. Delfino, Jr., M. del C. Sarno and, M. R. Delfino, Phenobarbital in pharmaceutical tablets by modified conductimetrical analysis, J. Arg. Chem. Soc. 96 (2008) 101-110.Google Scholar

  • 7. J. B. Raoof, M. Baghayeri and R. Ojani, A high sensitive voltammetric sensor for qualitative and quantitative determination of phenobarbital as an antiepileptic drug in presence of acetaminophen, Colloid Surface B 95 (2012) 121-128; DOI: 10.1016/j.colsurfb.2012.02.038.CrossrefGoogle Scholar

  • 8. M. Vosough, S. Ghafghazi and M. Sabetkasaei, Chemometrics enhanced HPLC-DAD performance for rapid quantification of carbamazepine and phenobarbital in human serum samples, Talanta 119 (2014) 17-23; DOI: 10.1016/j.talanta.2013.10.026.Web of ScienceCrossrefGoogle Scholar

  • 9. A. Serralheiro, G. Alves, A. Fortuna, M. Rocha and A. Falcão, First HPLC-UV method for rapid and simultaneous quantification of phenobarbital, primidonephenytoin, carbamazepine, carbamazepine-10, 11-epoxide, 10,11-trans-dihydroxy-10,11-dihydrocarbamazepine, lamotrigine, oxcarbazepine and licarbazepine in human plasma, J. Chromatogr. B 925 (2013) 1-9; DOI: 10.1016/j. jchromb.2013.02.026.CrossrefGoogle Scholar

  • 10. T. Villén and I. Petters, Analysis of barbiturates in plasma and urine using gas chromatography without prior derivatization, J. Chromatogr. A 258 (1983) 267-270; DOI: 10.1016/S0021-993(01)90686-7.CrossrefGoogle Scholar

  • 11. W. Chow and B. Caddy, Separation of underivatised barbiturates by capillary column gas chromatography: preparation of medium polar polymethylsiloxane columns to optimize selectivity, J. Chromatogr. A 318 (1985) 255-268; DOI: 10.1016/S0021-9673(01)90686-7CrossrefGoogle Scholar

  • 12. H. Zhao, L. Wang, Y. Qiu, Z. Zhou, X. Li and W. Zhong, Simultaneous determination of three residual barbiturates in pork using accelerated solvent extraction and gas chromatography-mass spectrometry, J. Chromatog. B 840 (2006) 139-145; DOI: 10.1016/j.jchromb.2006.05.002.CrossrefGoogle Scholar

  • 13. M. Iwai, H. Hattori, T. Arinobu, A. Ishii, T. Kumazawa, H. Noguchi, H. Noguchi, O. Suzuki and H. Seno, Simultaneous determination of barbiturates in human biological fluids by direct immersion solid-phase microextraction and gas chromatography-mass spectrometry, J. Chromatogr. B 806 (2004) 65-73; DOI: 10.1016/j.jchromb.2006.05.002.CrossrefGoogle Scholar

  • 14. A. Kadi, M. Hefnawy, S. Julkhuf, M. Abounassif, G. Mostafa, M. G. Kassem, S. Attia and A. Al- Ghamdi, Sample stacking microemulsion electrokinetic capillary chromatography induced by reverse migrating pseudostationary phase for the quantification of phenobarbital and its p-hydroxyphenobarbital metabolite in rat urine, Analyst 136 (2011) 2858-2865; DOI. 10.1039/C0AN00768D.CrossrefWeb of ScienceGoogle Scholar

  • 15. M. T. Ragab, M. K. A. El-Rahman, N. K. Ramadan, N. A. El-Ragehy and B. A. El-Zeany, Novel potentiometric application for the determination of pantoprazole sodium and itopride hydrochloride in their pure and combined dosage form, Talanta 138 (2015) 28-35; DOI: 10.1016/j.talanta.2015.01.045.Web of ScienceCrossrefGoogle Scholar

  • 16. M. Khater, H. Hassib, Y. Issa and S. Mohammed, Surface morphology changes of polymer membrane and carbon paste sertraline sensors, Talanta 134 (2015) 546-553; DOI: 10.1016/j.talanta.2014.11.018.Web of ScienceCrossrefGoogle Scholar

  • 17. M. M. Hefnawy, A. M. Homoda, M. A. Abounassif, A. M. Alanazi, A. Al-Majed and G. A. Mostafa, Potentiometric determination of moxifloxacin in some pharmaceutical formulation using PVC membrane sensors, Chem. Cent. J. 8 (2014) 59; DOI: 10.1186/s13065-014-0059-y.CrossrefWeb of ScienceGoogle Scholar

  • 18. J. L. Lima, M. C. B. Montenegro and A. R. Da Silva, A phenobarbital ion-selective electrode without an inner reference solution, and its application to pharmaceutical analysis, J. Pharm. Biomed. Anal. 8 (1990) 701-704; DOI: 10.1016/0731-7085(90)80106-Y.CrossrefGoogle Scholar

  • 19. H. AlRabiah, M. A. Abounassif, A. Al-Majed and G. A. E. Mostafa, Comparative investigation of β- and γ-cyclodextrin as ionophores in potentiometric based sensors for naltrexone, Int. J. Electrochem. Sci. 11 (2016) 4930-4942; DOI: 10.20964/2016.06.10.CrossrefWeb of ScienceGoogle Scholar

  • 20. K.-H. Frömming and J. Szejtli, Cyclodextrins in Pharmacy, Springer Science & Business Media, Budapest-Berlin 1993.Google Scholar

  • 21. R. Challa, A. Ahuja, J. Ali and R. Khar, Cyclodextrins in drug delivery: an updated review, AAPS PharmSciTech. 6 (2005) E329-E357.CrossrefGoogle Scholar

  • 22. S. S. Hassan and S. A. Marzouk, A novel ferroin membrane sensor for potentiometric determination of iron, Talanta 41 (1994) 891-899; DOI: 10.1016/0039-9140(94)E0042-P.CrossrefGoogle Scholar

  • 23. A. Carggs, G. Moody and J. Tomas, PVC matrix membrane ion-selective electrodes, J. Chem. Educ. 51 (1974) 541-544; DOI: 10.1021/ed051p541.CrossrefGoogle Scholar

  • 24. R. P. Buck and E. Lindner, Recommendations for nomenclature of ion selective electrodes (IUPAC Recommendations), Pure Appl. Chem. 66 (1994) 2527-2536; DOI: 10.1351/pac199466122527.CrossrefGoogle Scholar

  • 25. A. Lopata, F. Darvas, Á. Stadler‐Szóke and J. Szejtli, Quantitative structure-stability relationships among inclusion complexes of cyclodextrins I: Barbituric acid derivatives, J. Pharm. Sci. 74 (1985) 211-213; DOI: 10.1002/jps.2600740223.CrossrefGoogle Scholar

  • 26. K. Csabai, T. Cserháti and J. Szejtli, Interaction of some barbituric acid derivatives with hydroxypropyl-β-cyclodextrin, Int. J. Pharm. 91 (1993) 15-22; DOI: 10:1016/0378-5173(93)90416-D.Google Scholar

  • 27. R. Eugster, P. M. Gehrig, W. E. Morf, U. E. Spichiger and W. Simon, Selectivity-modifying influence of anionic sites in neutral-carrier-based membrane electrodes, Anal. Chem. 63 (1991) 2285-2289; DOI: 10.1021/ac00020a017.CrossrefGoogle Scholar

  • 28. E. Bakker and E. Pretsch, Modern potentiometry, Angew. Chem. Int. Ed. 46 (2007) 5660-5668; DOI: 10.1002/anie.200605068. CrossrefGoogle Scholar

  • 29. M. B. Gholivand, M. Mohammadi, M. Khodadadian and M. K. Rofouei, Novel platinum (II) selective membrane electrode based on 1,3-bis(2-cyanobenzene) triazene, Talanta 78 (2009) 922-928; DOI: 10.1016/j.talanta.2008.12.070.CrossrefWeb of ScienceGoogle Scholar

  • 30. A. C. Moffat, M. D. Osselton, B. Widdop and J. Watts (Eds.), Clarke’s analysis of Drugs and Poisons, in Pharmaceuticals, Body Fluids and Postmortem Material, Vol. 1., Pharmaceutical Press, London 2004.Google Scholar

  • 31. Y. Umezawa, P. Bühlmann, K. Umezawa, K. Tohda and S. Amemiya, Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (technical report), Pure Appl. Chem. 72 (2000) 1851-2082; DOI: 10.1351/pac200072101851.CrossrefGoogle Scholar

  • 32. British Pharmacopoeia, Stationery Office, London 2005, Volume II, pp. 1550.Google Scholar

  • 33. J. N. Miller and J. C. Miller, Statistics and Chemometrics for Analytical Chemistry, 5th ed., Pearson Education Limited , Harlow (UK) 2005. Google Scholar

About the article

Accepted: 2016-07-01

Published Online: 2016-10-15

Published in Print: 2016-12-01

Citation Information: Acta Pharmaceutica, Volume 66, Issue 4, Pages 503–514, ISSN (Online) 1846-9558, DOI: https://doi.org/10.1515/acph-2016-0042.

Export Citation

© by Gamal A.E. Mostafa. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in