Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Chimica Slovaca

The Journal of Slovak University of Technology in Bratislava

2 Issues per year

Open Access
Online
ISSN
1337-978X
See all formats and pricing
More options …

Characterization of cordierite-mullite ceramics prepared from natural raw materials

Abdulmula Ali Albhilil
  • Faculty of Chemical and Food Technology, Institute of Inorganic Chemistry, Technology and materials, STU Bratislava, Radlinského 9, 812 37 Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Martin Palou
  • Corresponding author
  • Faculty of Chemical and Food Technology, Institute of Inorganic Chemistry, Technology and materials, STU Bratislava, Radlinského 9, 812 37 Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jana Kozánková
  • Faculty of Chemical and Food Technology, Institute of Inorganic Chemistry, Technology and materials, STU Bratislava, Radlinského 9, 812 37 Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-05-22 | DOI: https://doi.org/10.2478/acs-2013-0001

Abstract

Series of six cordierite-mullite ceramics were synthesized via solid state reaction at various temperatures from 1250 °C for pure cordierite to 1500 °C for pure mullite. Then the samples were submitted to the test of thermal shock resistance based on cycling heating-quenching procedure. X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Mercury intrusion porosimeter (MIP) have been used to characterize the samples before and after cycling heating-quenching method. Sample 6 was broken after 35 heating-quenching cycles, while the five other reminded stable. The refractoriness of samples is found to be higher than that of commercial ones. XRD shows that heating-quenching procedure has led to crystallization of cordierite and mullite phases. Apart from sample 6, the pore structure is stable with slight consolidation. The microstructure images confirm the results of XRD and MIP showing crack in sample 6 only, but compact and larger particles resulting from crystal growth in other samples due to the repeated action of heating.

Keywords: cordierite-mullite; thermal resistance; microstructure; pore structure

  • Cristina G, Ecaterina A, Oana N, Dicea A, Mihaela B (2007): J. Eur. Ceram. Soc. 27: 711-713.Google Scholar

  • Ebadzadeh T, Lee W E (1998): J. Eur. Ceram. Soc.18: 837-848.Google Scholar

  • Evans DL, Ficher GR, Geiger JE, Martin FM (1980): J. Am. Ceram. Soc. 63: 629-634.Google Scholar

  • Goren R, Ozgur C, Gocmez H (2006): Ceramics International. 32: 53-56.Google Scholar

  • Gonzalez-Velasco JR, Gutierrez-Ortiz MA, Ferret R (1999): J. Mater. Sci. 34: 1999-2002.Google Scholar

  • Hlavač 1988. Zaklady technologie silikatů SNTL ALFA, Praha, Czech Republic, (in Czech, Elements of Silicate Technology).Google Scholar

  • Hodge JD (1989): J Am. Ceram, Soc. 72: (7) 1295-1298.Google Scholar

  • Kingery WD (1960): Introduction to Ceramics. John Wiley and Sons, New York.Google Scholar

  • Kumta PN, Hackenberg RE, McMichael P, Johnson WC (1994): Mat. Lett. 20: 355-362.Google Scholar

  • Mussler BH, Shafer MW (1984): Ceram, Bull. 65: (3) 705-710.Google Scholar

  • Naskar MK, Chatterjee M (2004): J. Eur. Ceram. Soc. 24: 3499.Google Scholar

  • Pach L, Iratni A, Kovar V, Mankoš P, Komarneni S (1996): J. Eur. Ceram. Soc. 16: 561-565.Google Scholar

  • Petrovic R, Janackovic DJ, Zec S, Drmanic S. and Kostic- Gvozdenovic Lj (2002): Mater. Res. 16: 26.Google Scholar

  • Rohana P, Neufussa K, Matějiček J, Dubskya J, Prchlik L, Holzgartner C (2004): Ceramics International. 30: 597-603.Google Scholar

  • Rudolph T, Pannhorst W, Petzow G (1993): Journal of Non-Crystalline Solids 155: 273-281.Google Scholar

  • R.Gopi CH, Patil KC, Chandrappa GT (1995): J. Mater. Sci. Lett. 14: 548-555.Google Scholar

  • Smart RM, Glasser FP (1981): Ceram. Inter. 7: (3) 90-97.Google Scholar

  • Schneider H, Eberhard E (1990): J. Am. Ceram. Soc. 73: (7) 2073-2076.Google Scholar

  • Schneider H, Schreuer J, Hildmann B (2008): J. Eur. Ceram. Soc. 28: 329-344.Google Scholar

  • Sugiura K, Kuroda Y (1955): J. Ceram. Soc. Jpn. 63: 579-582.Google Scholar

  • Suzuki H, Ota K, Saito H (1987): J. Ceram. Soc. Japan (Yogyo-Kyokai-Shi) 95: (2) 163-169.Google Scholar

  • Yingchao D, Xuyong F, Xuefei F, Yanwei D, Xingqin L, Guangyao M (2008): Journal of Alloys and Compounds. 460: 599-606.Google Scholar

  • Yingchao D, Stuart H, Jian-er Z, Zhanlin J, Jiandong W, Guangyao M (2011): J. Eur. Ceram. Soc. 31: 687-695.Google Scholar

  • Yuichi K, Katsuhiro S, Etsuro K (2000): Ceramics International. 26: 739-743.Google Scholar

  • Zdeněk C, Dino NB, Cristina L, Marcello R, Aldo RB (2006): Ceram.-Silik. 50: (4) 245-250.Google Scholar

About the article

Published Online: 2013-05-22

Published in Print: 2013-04-01


Citation Information: Acta Chimica Slovaca, ISSN (Print) 1337-978X, DOI: https://doi.org/10.2478/acs-2013-0001.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in