Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Chimica Slovaca

The Journal of Slovak University of Technology in Bratislava

2 Issues per year

Open Access
See all formats and pricing
More options …

Quantum-chemical study of C— H bond dissociation enthalpies of various small non-aromatic organic molecules

Peter Poliak
  • Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Adam Vagánek
  • Corresponding author
  • Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology, Radlinského 9, SK-812 37 Bratislava, Slovakia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2013-05-22 | DOI: https://doi.org/10.2478/acs-2013-0012


In this work, C-H bond dissociation enthalpies (BDE) and vertical ionization potentials (IP) for various hydrocarbons and ketones were calculated using four density functional approaches. Calculated BDEs and IPs were correlated with experimental data. The linearity of the corresponding dependences can be considered very good. Comparing two used functionals, B3LYP C-H BDE values are closer to experimental results than PBE0 values for both used basis sets. The 6-31G* basis set employed with both functionals, gives the C-H BDEs closer to the experimental values than the 6-311++G** basis set. Using the obtained linear dependences BDEexp = f (BDEcalc), the experimental values of C-H BDEs for some structurally related compounds can be estimated solely from calculations. As a descriptor of the C-H BDE, the IPs and 13C NMR chemical shifts have been investigated using data obtained from the B3LYP/6-31G* calculations. There is a slight indication of linear correlation between IPs and C-H BDEs in the sets of simple alkanes and alkenes/ cycloalkenes. However, for cycloalkanes and aliphatic carbonyl compounds, no linear correlation was found. In the case of the 13C NMR chemical shifts, the correlation with C-H BDEs can be found for the sets of alkanes and cycloalkanes, but for the other studied molecules, no trends were detected.

Keywords: BDE; NMR chemical shift; alkanes; alkenes; descriptor; radical scavenging

  • Adamo C, Barone V (1999) Chem. Phys. Lett. 314, 152-157.Google Scholar

  • Adamo C, Barone V (1999) J. Chem. Phys. 110, 6158-6170.Google Scholar

  • Adamo C, Cossi M, Scalmani G, Barone V (1999) Chem. Phys. Lett. 307, 265-271.Google Scholar

  • Bachrach SM (2007) Computational Organic Chemistry, John Wiley & Sons.Google Scholar

  • Benson SW (1976) Thermochemical Kinetics, 2nd Ed.Wiley-Interscience: New York.Google Scholar

  • Binkley JS, Pople JA, Hehre (1980) J. Am. Chem. Soc. 102, 939-947.Google Scholar

  • Blanksby SJ, Ellison GB (2003) Acc. Chem. Res. 36, 366-263.Google Scholar

  • Bordwell FG, Harrelson JA Jr. (1990) Can. J. Chem. 68, 1714-1718.Google Scholar

  • Bordwell FG, Zhang XM, Cheng JP (1993) J. Org. Chem. 58, 6410-6414.Google Scholar

  • Bordwell FG, Zhang XM, Satish AV, Cheng JP (1994) J. Am. Chem. Soc. 116, 6605-6610.Google Scholar

  • Clayden J, Greeves N, Warren S, Wothers P (2001) Organic Chemistry, OUP: Oxford.Google Scholar

  • Ditchfield R (1974) Mol. Phys. 27, 789-807.Google Scholar

  • Dodds JL, McWeeny R, Sadlej AJ (1980) Mol. Phys. 41, 1419-1430.Google Scholar

  • Ervin KM (2001) Chem. Rev. 101, 391-444.Google Scholar

  • Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Jr., Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cosi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegava J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain M-C, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nakaryakkara A, Chalacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzales C, Pople JA (2003) GAUSSIAN 03. Revision A.1. Pittsburg. Pa.Google Scholar

  • Jonsson M, Lind J, Eriksen TE, Merenyi G (1994) J. Am. Chem. Soc. 116, 1423-1427.Google Scholar

  • Klein E, Lukeš V (2006) Chemical Physics 330, 515-525.Google Scholar

  • Klein E, Lukeš V (2006) Journal of Molecular Structure: THEOCHEM 767, 43-50.Google Scholar

  • Klein E, Lukeš V, Cibulkova Z, Polovkova J (2006) Journal of Molecular Structure: THEOCHEM 758, 149-159.Google Scholar

  • Klein E, Lukeš V, Ilčin M (2007) Chemical Physics 336, 51-57.Google Scholar

  • Lee C, Yang W, Parr RG (1988) Phys. Rev. B 37, 785-789.Google Scholar

  • Lengyel J, Rimarčik J, Vaganek A, Fedor J, Lukeš V, Klein E (2012) Food Chemistry 133, 1435-1440.Google Scholar

  • McFaul PA, Wayner DDM, Ingold KU (1997) J. Org. Chem. 62, 3409-3412.Google Scholar

  • McWeeny R (1962) Phys. Rev. 126, 1028-1034.Google Scholar

  • NIST webbook (2013) http://webbook.nist.gov/Pratt DA, DiLabio GA, Mulder P, Ingold KU (2004) Acc. Chem. Res. 37, 334-340.Google Scholar

  • Rassolov VA, Ratner MA, Pople JA, Redfern PC, Curtiss LA (2001) Journal of Computational Chemistry 22, 976-984. Google Scholar

  • Rimarčik J, Lukeš V, Klein E, Griesser M, Kelterer AM (2008) Chem. Phys. 353, 177-184.Google Scholar

  • Rimarčik J, Lukeš V, Klein E, Rottmannova L (2011) Comp. Theor. Chem. 967, 273-283.Google Scholar

  • Ruscic B, Berkowitz J, Curtiss, LA, Pople, JA (1989) J. Chem. Phys. 91, 114-121.Google Scholar

  • Saracino GAA, Improta R, Barone V (2003) Chem. Phys. Lett. 373, 411-415.Google Scholar

  • SDBS Web (2013) http://sdbs.riodb.aist.go.jp (National Institute of Advanced Industrial Science and Technology, 05-04-2013) Google Scholar

  • Seakins PW, Pilling MJ, Niiranen JT, Gutman D, Krasnoperov, LN (1992) J. Phys. Chem. 96, 9847-9855.Google Scholar

  • Vaganek A, Rimarčik J, Ilčin M, Škorňa P, Lukeš V, Klein E (2013) Comp. Theor. Chem., DOI: http://dx.doi.org/10.1016/j.comptc.2013.03.027.CrossrefGoogle Scholar

  • Wolinski K, Hilton JF, Pulay P (1990) J. Am. Chem. Soc. 112, 8251-8260.Google Scholar

  • Zhu Q, Zhang XM, Fry AJ (1997) Polym. Degrad. Stab. 57, 43-50.Google Scholar

About the article

Published Online: 2013-05-22

Published in Print: 2013-04-01

Citation Information: Acta Chimica Slovaca, Volume 6, Issue 1, Pages 64–72, ISSN (Print) 1337-978X, DOI: https://doi.org/10.2478/acs-2013-0012.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Vladimír Lukeš, Peter Škorňa, Martin Michalík, and Erik Klein
Chemical Physics Letters, 2017
Peter Škorňa, Jozef Lengyel, Ján Rimarčík, and Erik Klein
Computational and Theoretical Chemistry, 2014, Volume 1038, Page 26

Comments (0)

Please log in or register to comment.
Log in