Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Chimica Slovaca

The Journal of Slovak University of Technology in Bratislava

2 Issues per year

Open Access
Online
ISSN
1337-978X
See all formats and pricing
More options …

Synergetic effects of Cu2O photocatalyst with titania and enhanced photoactivity under visible irradiation

Dongfang Zhang
Published Online: 2013-05-22 | DOI: https://doi.org/10.2478/acs-2013-0022

Abstract

Heterogeneous TiO2/Cu2O nanocomposite was synthesized for photocatalysis through surface impregnation in conjunction with the environmentally friendly soft chemical reduction strategy. The detailed structural, compositional, optical and photoelectrochemical properties of the obtained products are analyzed by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), photoluminescence spectra (PL) and electron spin resonance (ESR) spectroscopy techniques. Moreover, methyl orange (MO) dye was chosen as the probe molecule for evaluation of the photocatalytic activities of the samples under visible light (λ > 420 nm) irradiation. The experiments demonstrated that MO in aqueous solution was more efficiently photodegraded using TiO2/Cu2O composite photocatalysts than pure Cu2O alone. This was attributed to the good crystallinity, wide visible-light absorption range, and the efficient electron-hole pair separation properties of the TiO2/Cu2O nanoheterostructures. In this photocatalyst, visiblelight- active Cu2O component was used as a medium to absorb photons and convert them into photogenerated charges, and TiO2 nanoparticles were used as charge collectors to transport the photoinduced charges. The TiO2/Cu2O hybrid material showed improved separation of photoinduced electron-hole pairs owing to the potential-energy differences between Cu2O and TiO2, and therefore exhibited enhanced photocatalytic activity.

Keywords: photodecomposition; coupled semiconductor; methyl orange

  • 1. Zhang Y, Li DL, Chen Y, Wang XH, Wang ST (2009) Appl Catal B 86: 182-189.Google Scholar

  • 2. Herrera F, Lopez A, Mascolo G, Albers P, Kiwi J (2001) Water Res 35: 750-760.PubMedGoogle Scholar

  • 3. Linsebigler AL, Lu G, Yates JT (1995) Chem Rev 95: 735-758.Google Scholar

  • 4. Saravanan R, Karthikeyan N, Gupta VK, Thirumal E, Thangadurai P, Narayanan V, Stephen A (2013) Mater Sci Eng C 33: 2235-2244.Google Scholar

  • 5. Zhang JW, Zhang M, Jin ZS, Wang JJ, Zhang ZJ (2012) Appl Surf Sci 258: 3991-3999.Google Scholar

  • 6. Zhang SW, Li JX, Niu HH, Xu WQ, Xu JZ, Hu WP, Wang XK (2013) ChemPlusChem 78: 192-199.Google Scholar

  • 7. Zhang K, Jing DW, Chen QY, Guo LJ (2010) Int J Hydrogen Energy 35: 2048-2057.Google Scholar

  • 8. Hanaor DAH, Sorrell CC (2011) J Mater Sci 46: 855-874.Google Scholar

  • 9. Zhang H, Lv XJ, Li YM, Wang Y, Li JH (2010) ACS Nano 4: 380-386.PubMedGoogle Scholar

  • 10. Zhang YH, Tang ZR, Fu XZ, Xu YJ (2010) ACS Nano 4: 7303-7314.PubMedGoogle Scholar

  • 11. Zhang YH, Tang ZR, Fu XZ, Xu YJ (2011) ACS Nano 5: 7426-7435.PubMedGoogle Scholar

  • 12. Zhang SM, Chen YY, Yu Y, Wu HH, Wang SR, Zhu BL, Huang WP, Wu SH (2008) J Nanopart Res 10: 871-875.Google Scholar

  • 13. Zhang XT, Zhou GW, Zhang HY, Wu CC, Song HB (2011) Transition Met Chem 36: 217-222.Google Scholar

  • 14. Zhang JZ, Chen XG, Shen YD, Li YW, Hu ZG, Chu JH (2011) Phys. Chem. Chem. Phys 13: 13096-13105.PubMedGoogle Scholar

  • 15. Wu YM, Xing MY, Zhang JL (2011) J Hazard Mater 192: 368-373.Google Scholar

  • 16. Zhang ZJ, Wang WZ, Wang L, Sun SM (2012) ACS Appl Mater Interfaces 4: 593-597.PubMedGoogle Scholar

  • 17. Zhang J, Li LP, Yan TJ, Li GS (2011) J Phys Chem C 115: 13820-13828.Google Scholar

  • 18. Zhang YH, Tang ZR, Fu XZ, Xu YJ (2011) Appl Catal B 106: 445-452.Google Scholar

  • 19. Saravanan R, Shankar H, Prakash T, Narayanan V, Stephen A (2011) Mater Chem Phys 125: 277-280.Google Scholar

  • 20. Zhang X, Zhang LZ, Xie TF, Wang DJ (2009) J Phys Chem C 113: 7371-7378.Google Scholar

  • 21. Hara M, Kondo T, Komoda M, Ikeda S, Shinohara K, Tanaka A, Kondo JN, Domen K (1998) Chem Commun 3: 357-358.Google Scholar

  • 22. Ma L, Li J, Sun H, Qiu M, Wang J, Chen J, Yu Y (2010) Mater Res Bull 45: 961-968.Google Scholar

  • 23. Zhang SS, Zhang SQ, Peng F, Zhang HM, Liu HW, Zhao HJ (2011) Electrochem Commun 13: 861-864.Google Scholar

  • 24. Han CH, Li ZY, Shen JY (2009) J Hazard Mater 168: 215-219.Google Scholar

  • 25. Wang XF, Chen GM, Zhang J (2013) Catal Commun 31: 57-61.Google Scholar

  • 26. Xiu FR, Zhang FS (2009) J Hazard Mater 172: 1458-1463Google Scholar

  • 27. Li LK, Xu LL, Shi WD, Guan JG (2013) Int J Hydrogen Energ 38: 816-822.Google Scholar

  • 28. Riaz N, Chong FK, Dutta BK, Man ZB, Khan MS, Nurlaela E (2012) Chem Eng J 185-186: 108-119.Google Scholar

  • 29. Sathishkumar P, Sweena R, Wu JJ, Anandan S (2011) Chem Eng J 171: 136-140.Google Scholar

  • 30. Anandan S, Lee GJ, Chen PK, Fan CH, Wu JJ (2010) Ind Eng Chem Res 49: 9729-9737.Google Scholar

  • 31. Sathishkumar P, Mangalaraja RV, Anandan S, Ashokkumar M (2013) Chem Eng J 220: 302-310.Google Scholar

  • 32. Zhang YP, Pan CX (2011) J Mater Sci 46: 2622-2626.Google Scholar

  • 33. Karunakaran C, Abiramasundari G, Gomathisankar P, Manikandan G, Anandi V (2011) Mater Res Bull 46: 1586-1592.Google Scholar

  • 34. Duan F, Zheng Y, Chen MQ (2011) Appl Surf Sci 257: 1972-1978.Google Scholar

  • 35. Wang JX, Ruan H, Li WJ, Li DZ, Hu Y, Chen J, Shao Y, Zheng Y (2012) J Phys Chem C 116: 13935-13943.Google Scholar

  • 36. Wang D, Xue G, Zhen Y, Fu F, Li D (2012) J Mater Chem 22: 4751-4758.Google Scholar

  • 37. Wang Z, Ma W, Chen C, Ji W, Zhao J (2011) Chem Eng J 170, 353-362.Google Scholar

  • 38. Yan GL, Chen J, Hua ZZ (2009) J Photoch Photobio A 207: 153-159.Google Scholar

  • 39. Zhang JW, Jin ZS, Feng CX, Yu LG, Zhang JW, Zhang ZJ (2011) J Solid State Chem 184: 3066-3073.Google Scholar

  • 40. Coronado JM, Soria J (2007) Catal Today 123: 37-41.Google Scholar

  • 41. Wang F, Zhang K (2011) J Mol Catal A 345: 101-107.Google Scholar

  • 42. Zhang GY, Sun YQ, Gao DZ, Xu YY (2010) Mater Res Bull 45: 755-760.Google Scholar

About the article

Published Online: 2013-05-22

Published in Print: 2013-04-01


Citation Information: Acta Chimica Slovaca, ISSN (Print) 1337-978X, DOI: https://doi.org/10.2478/acs-2013-0022.

Export Citation

This content is open access.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
X. Fuku, N. Matinise, M. Masikini, K. Kasinathan, and Malik Maaza
Materials Research Bulletin, 2017
[2]
Dinh Cung Tien Nguyen, Kwang Yeon Cho, and Won-Chun Oh
Fullerenes, Nanotubes and Carbon Nanostructures, 2017, Page 0
[3]
Dara Zarbaf, Majid Montazer, and Ali Sadeghian Maryan
Cellulose, 2017, Volume 24, Number 9, Page 4083
[4]
Dinh Cung Tien Nguyen, Kwang-Youn Cho, and Won-Chun Oh
Applied Surface Science, 2017, Volume 412, Page 252

Comments (0)

Please log in or register to comment.
Log in