Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Chimica Slovaca

The Journal of Slovak University of Technology in Bratislava

2 Issues per year

Open Access
See all formats and pricing
More options …

Effectiveness of photodecomposition of rhodamine B and malachite green upon coupled tricomponent TiO2(Anatase-Rutile)/ZnO nanocomposite

Dongfang Zhang
Published Online: 2013-11-23 | DOI: https://doi.org/10.2478/acs-2013-0038


In this study, mixed phase ZnO-TiO2 nanocomposite consisting of hexagonal ZnO and anatase/rutile TiO2 has been synthesized via sol-gel process.The physical and photochemical properties of samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), photoluminscience spectra (PL) and and photocurrent action spectra techniques. In the case of minerlization of rhodamine B (RhB) and malachite green (MG) dyes, the coupled ZnO-TiO2 nanocomposite with the suitable band structure and the lowest photoluminescence intensity showed the best photodecolorization activity. Synergistic effects between the two oxides for photocatalytic decomposition of RhB and MG are proposed to elucidate the decolorization mechanism. The lifetime of electrons and holes was prolonged in the ZnO-anatase/rutile multiple-component system, which can enhance the light harvest and the ability of generating photo-induced electron-hole pairs of active sites, and the favorable electron-transfer properties in the coupled ZnO-TiO2 nanocomposite. Therefore, the as-prepared ZnO-TiO2 nanocomposite showed an excellent efficiency towards the removal of aqueous organic dyes and it is of certain significance for environmental photocatalysis.

Keywords: Photocatalytic; heterostructure; dyes

  • 1. Kochuveedu ST, Jang YH, Kim DH (2013) Chem Soc Rev 42: 8467-8493.PubMedGoogle Scholar

  • 2. Wang YN, Deng KJ, Zhang LZ (2011) J Phys Chem C 115: 14300-14308.Google Scholar

  • 3. Xu H, Zhang LZ (2010) J Phys Chem C 114: 11534-11541.Google Scholar

  • 4. Zhang JW, Zhu PL, Li JH, Chen JM, Wu ZS, Zhang ZJ (2009) Cryst Growth Des 9: 2329-2334.Google Scholar

  • 5. Zhang LW, Zhu YF (2012) Catal Sci Technol 2: 694-706.Google Scholar

  • 6. Zhang HC, Huang H, Ming H, Li HT, Zhang LL, Liu Y, Kang ZH (2012) J Mater Chem 22: 10501-10506.Google Scholar

  • 7. Zhang SW, Xu WQ, Zeng MY, Li JX, Xu JZ, Wang XK (2013) Dalton Trans 42: 13417-13424.PubMedGoogle Scholar

  • 8. Zhang J, Xi JH, Ji ZG (2012) J Mater Chem 22: 17700-17708.Google Scholar

  • 9. Zhang SW, Li JX, Niu HH, Xu WQ, Xu JZ, Hu WP, Wang XK (2013) ChemPlusChem 78: 192-199.Google Scholar

  • 10. Zhang K, Jing DW, Chen QY, Guo LJ (2010) Int J Hydrogen Energy 35: 2048-2057.Google Scholar

  • 11. Guo YD, Zhang GK, Liu J, Zhang YL (2013) RSC Adv 3: 2963-2970.Google Scholar

  • 12. Guo YD, Zhang GK, Gan HH, Zhang YL (2012) Dalton Trans 41: 12697-12703.PubMedGoogle Scholar

  • 13. Wan Z, Zhang GK, Wang JT, Zhang YL (2013) RSC Adv 3: 19617-19623.Google Scholar

  • 14. Zhang J, Qiao SZ, Qi LF, Yu JG (2013) Phys Chem Chem Phys15: 12088-12094.PubMedGoogle Scholar

  • 15. Zhang J, Liu SW, Yu JG, Jaroniec M (2011) J Mater Chem 21: 14655-14662.Google Scholar

  • 16. Zhang J, Zhang YP, Lei YK, Pan CX (2011) Catal Sci Technol 1: 273-278.Google Scholar

  • 17. Zhang LW, Dillert R, Bahnemann D, Vormoor M (2012) Energy Environ Sci 5: 7491-7507.Google Scholar

  • 18. Yu JG, Zhang J (2010) Dalton Trans 39: 5860-5867.PubMedGoogle Scholar

  • 19. Sajjad S, Leghari SAK, Zhang JL (2013) RSC Adv 3: 12678-12687.Google Scholar

  • 20. Xiao X, Zhang WD (2011) RSC Adv1: 1099-1105.Google Scholar

  • 21. Ge SX, Jia HM, Zhao HX, Zheng Z, Zhang LZ (2010) J Mater Chem 20: 3052-3058.Google Scholar

  • 22. Liu J, Zhang GK, Yu JC, Guo YD (2013) Dalton Trans 42: 5092-5099.PubMedGoogle Scholar

  • 23. Yu JG, Zhang J, Jaroniec M (2010) Green Chem 12: 1611-1614.Google Scholar

  • 24. Song SY, Gao W, Wang X, Li XY, Liu DP, Xing Y, Zhang HJ (2012) Dalton Trans 41: 10472-10476.PubMedGoogle Scholar

  • 25. Xiao X, Zhang WD (2010) J Mater Chem 20: 5866-5870.Google Scholar

  • 26. Zhang GK, Shen X, Yang YQ (2011) J Phys Chem C 115: 7145-7152.Google Scholar

  • 27. Ge SX, Wang BB, Lin J, Zhang LZ (2013) CrystEngComm 15: 721-728.Google Scholar

  • 28. Zhang ZZ, Luo ZS, Yang ZP, Zhang SY, Zhang Y, Zhou Y, Wang XX, Fu XZ (2013) RSC Adv 3: 7215-7218.Google Scholar

  • 29. Zhang YL, Deng LJ, Zhang GK, Gan HH (2011) Colloid Surface A 384: 137-144.Google Scholar

  • 30. Zhang YL, Wang DJ, Zhang GK (2011) Chem Eng J 173: 1-10.Google Scholar

  • 31. Zhang YL, Guo YD, Zhang GK, Gao YY (2011) Appl Clay Sci 51: 335-340.Google Scholar

  • 32. Zhang L, Tian BZ, Chen F, Zhang JL (2012) Int J Hydrogen Energ 37: 17060-17067.Google Scholar

  • 33. Tian BZ, Li CZ, Zhang JL (2012) Chem Eng J 191: 402-409.Google Scholar

  • 34. Jiao YC, Chen F, Zhao B, Yang HY, Zhang JL (2012) Colloid Surface A 402: 66-71.Google Scholar

  • 35. Wu YM, Xing MY, Zhang JL (2011) J Hazard Mater 192: 368-373.PubMedGoogle Scholar

  • 36. Zhang MY, Shao CL, Zhang P, Su CY, Zhang X, Liang PP, Sun YY, Liu YC (2012) J Hazard Mater 225-226: 155-163.Google Scholar

  • 37. Zhang J, Su YJ, Wei H, Wang J, Zhang C, Zhao J, Yang Z, Xu MJ, Zhang LL, Zhang YF (2013) Mater Lett 107: 251-254.Google Scholar

  • 38. Shi YF, Chen F, Zhang JL (2013) Appl Surf Sci 265: 912-918.Google Scholar

  • 39. Zhang YH, Tang ZR, Fu XZ, Xu YJ (2010) ACS Nano 4: 7303-7314.PubMedGoogle Scholar

  • 40. Zeng CY, Tian BZ, Zhang JL (2013) J Colloid Interf Sci 405: 17-21.Google Scholar

  • 41. Chen CH, Liang YH, Zhang WD (2010) J Alloy Compd 501: 168-172.Google Scholar

  • 42. Zhang GK, Li M, Yu SJ, Zhang SM, Huang BB, Yu JG (2010) J Colloid Interf Sci 345: 467-473.Google Scholar

  • 43. Zhang YL, Gan HH, Zhang GK (2011) Chem Eng J 172: 936-943.Google Scholar

  • 44. Zhang LY, Yin LW, Wang CX, Lun N, Qi YX (2010) ACS Appl Mater Interfaces 2: 1769-1773.PubMedGoogle Scholar

  • 45. Zhang YC, Li J, Zhang M, Dionysiou DD (2011) Environ Sci Technol 45: 9324-9331.PubMedGoogle Scholar

  • 46. Wang LZ, Jiang L, Xu CC, Zhang JL (2012) J Phys Chem C 116: 16454-16460.Google Scholar

  • 47. Zhang J, Yu JG, Zhang YM, Li Q, Gong JR (2011) Nano Lett 11: 4774-4779.PubMedGoogle Scholar

  • 48. Ai ZH, Zhang LZ, Lee SC (2010) J Phys Chem C 114: 18594-18600.Google Scholar

  • 49. Zhang J, Yu JG, Jaroniec M, Gong JR (2012) Nano Lett 12: 4584-4589.PubMedGoogle Scholar

  • 50. Zhang JY, Wang YH, Zhang J, Lin Z, Huang F, Yu JG (2013) ACS Appl Mater Interfaces 5: 1031-1037.PubMedGoogle Scholar

  • 51. Zhang WD, Zhang Q, Dong F (2013) Ind Eng Chem Res 52: 6740-6746.Google Scholar

  • 52. Dong RF, Tian BZ, Zeng CY, Li TY, Wang TT, Zhang JL (2013) J Phys Chem C 117: 213-220.Google Scholar

  • 53. Zhang J, Pan CX, Fang PF, Wei JH, Xiong R (2010) ACS Appl Mater Interfaces 2: 1173-1176.PubMedGoogle Scholar

  • 54. Su K, Ai ZH, Zhang LZ (2012) J Phys Chem C 116: 17118-17123.Google Scholar

  • 55. Zhang JW, Zhang M, Jin ZS, Wang JJ, Zhang ZJ (2012) Appl Surf Sci 258: 3991-3999.Google Scholar

  • 56. Zhang LW, Man Y, Zhu YF (2011) ACS Catal 1: 841-848.Google Scholar

  • 57. Jiang J, Zhang X, Sun PB, Zhang LZ (2011) J Phys Chem C 115: 20555-20564.Google Scholar

  • 58. Zhang H, Lv XJ, Li YM, Wang Y, Li JH (2010) ACS Nano 4: 380-386.PubMedGoogle Scholar

  • 59. Zhang SM, Chen YY, Yu Y, Wu HH, Wang SR, Zhu BL, Huang WP, Wu SH (2008) J Nanopart Res 10: 871-875.Google Scholar

  • 60. Zhang X, Zhang LZ, Xie TF, Wang DJ (2009) J Phys Chem C 113: 7371-7378.Google Scholar

  • 61. Zhang X, Zhang LZ (2010) J Phys Chem C 114: 18198-18206.Google Scholar

  • 62. Zhang H, Zhu YF (2010) J Phys Chem C 114: 5822-5826.Google Scholar

  • 63. Zhang YP, Pan CX (2011) J Mater Sci 46: 2622-2626.Google Scholar

  • 64. Zhang JL, Wu YM, Xing MY, Leghari SAK, Sajjad S (2010) Energy Environ. Sci 3: 715-726.Google Scholar

  • 65. Zhang YA, Fan HQ, Li MM, Tian HL (2013) Dalton Trans 42: 13172-13178.PubMedGoogle Scholar

  • 66. Wan Z, Zhang GK, Wang JT, Zhang YL (2013) RSC Adv 3: 19617-19623.Google Scholar

  • 67. Riaz N, Chong FK, Dutta BK, Man ZB, Khan MS, Nurlaela E (2012) Chem Eng J 185-186: 108-119.Google Scholar

  • 68. Zhang DF (2013) Acta Chim Slov 6: 141-149.Google Scholar

  • 69. Feng CX, Jin ZS, Zhang JW, Wu ZS, Zhang ZJ (2010) Photochem Photobiol 86: 1222-1229.PubMedGoogle Scholar

  • 70. Jiang J, Zhang LZ (2011) Chem Eur J 17: 3710-3717.Google Scholar

  • 71. Jiang J, Li H, Zhang LZ (2012) Chem Eur J 18: 6360-6369.Google Scholar

  • 72. Zhang YP, Li CZ, Pan CX (2012) J Am Ceram Soc 95: 2951-2956.Google Scholar

  • 73. Xu YS, Zhang WD (2013) Chemcatchem 5: 2343-2351.Google Scholar

  • 74. Sajjad S, Leghari SAK, Chen F, Zhang JL (2010) Chem Eur J 16: 13795-13804Google Scholar

  • 75. Yu H, Tian BZ, Zhang JL (2011) Chem Eur J 17: 5499-5502.Google Scholar

  • 76. Zhang YP, Fei LF, Jiang XD, Pan CX, Wang Y (2011) J Am Ceram Soc 94: 4157-4161. Google Scholar

About the article

Published Online: 2013-11-23

Published in Print: 2013-10-01

Citation Information: Acta Chimica Slovaca, Volume 6, Issue 2, Pages 245–255, ISSN (Print) 1337-978X, DOI: https://doi.org/10.2478/acs-2013-0038.

Export Citation

This content is open access.

Comments (0)

Please log in or register to comment.
Log in