Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Calculus of Variations

Managing Editor: Duzaar, Frank / Kinnunen, Juha

Editorial Board Member: Armstrong, Scott N. / Astala, Kari / Colding, Tobias / Dacorogna, Bernard / Dal Maso, Gianni / DiBenedetto, Emmanuele / Fonseca, Irene / Finster, Felix / Gianazza, Ugo / Gursky, Matthew / Hardt, Robert / Ishii, Hitoshi / Kristensen, Jan / Manfredi, Juan / Martell, Jose Maria / McCann, Robert / Mingione, Giuseppe / Nystrom, Kaj / Pacard, Frank / Preiss, David / Riviére, Tristan / Schaetzle, Reiner / Silvestre, Luis

4 Issues per year

IMPACT FACTOR 2016: 1.182

CiteScore 2016: 0.78

SCImago Journal Rank (SJR) 2016: 1.277
Source Normalized Impact per Paper (SNIP) 2016: 0.881

Mathematical Citation Quotient (MCQ) 2016: 0.83

See all formats and pricing
More options …

Boundary regularity for polyharmonic maps in the critical dimension

Tobias Lamm
  • Max-Planck-Institute for Gravitational Physics, Am Mühlenberg 1, 14476 Golm, Germany. E-mail:
/ Changyou Wang
  • Department of Mathematics, University of Kentucky, Lexington, KY 40506-0027, USA. E-mail:
Published Online: 2009-02-03 | DOI: https://doi.org/10.1515/ACV.2009.001


We consider the Dirichlet problem for intrinsic and extrinsic k-polyharmonic maps from a bounded, smooth domain Ω ⊆ ℝ2k to a compact, smooth Riemannian manifold N ⊆ ℝ l without boundary. For any smooth boundary data, we show that any k-polyharmonic map uW k,2(Ω, N) is smooth near the boundary ∂Ω.

Keywords.: Polyharmonic maps; boundary regularity

About the article

Received: 2008-03-13

Revised: 2008-06-26

Published Online: 2009-02-03

Published in Print: 2009-02-01

Citation Information: Advances in Calculus of Variations, ISSN (Online) 1864-8266, ISSN (Print) 1864-8258, DOI: https://doi.org/10.1515/ACV.2009.001.

Export Citation

Comments (0)

Please log in or register to comment.
Log in