Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Calculus of Variations

Managing Editor: Duzaar, Frank / Kinnunen, Juha

Editorial Board Member: Armstrong, Scott N. / Astala, Kari / Colding, Tobias / Dacorogna, Bernard / Dal Maso, Gianni / DiBenedetto, Emmanuele / Fonseca, Irene / Finster, Felix / Gianazza, Ugo / Gursky, Matthew / Hardt, Robert / Ishii, Hitoshi / Kristensen, Jan / Manfredi, Juan / Martell, Jose Maria / McCann, Robert / Mingione, Giuseppe / Nystrom, Kaj / Pacard, Frank / Preiss, David / Riviére, Tristan / Schaetzle, Reiner / Silvestre, Luis

4 Issues per year


IMPACT FACTOR 2016: 1.182

CiteScore 2016: 0.78

SCImago Journal Rank (SJR) 2016: 1.277
Source Normalized Impact per Paper (SNIP) 2016: 0.881

Mathematical Citation Quotient (MCQ) 2016: 0.83

Online
ISSN
1864-8266
See all formats and pricing
More options …

On steady flows of incompressible fluids with implicit power-law-like rheology

Miroslav Bulíček
  • Mathematical Institute, Charles University, Sokolovská 83, 186 75 Prague, Czech Republic. E-mail:
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Piotr Gwiazda
  • Institute of Applied Mathematics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland. E-mail:
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Josef Málek
  • Mathematical Institute, Charles University, Sokolovská 83, 186 75 Prague, Czech Republic. E-mail:
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Agnieszka Świerczewska-Gwiazda
  • Institute of Applied Mathematics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland. E-mail:
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2009-02-24 | DOI: https://doi.org/10.1515/ACV.2009.006

Abstract

We consider steady flows of incompressible fluids with power-law-like rheology given by an implicit constitutive equation relating the Cauchy stress and the symmetric part of the velocity gradient in such a way that it leads to a maximal monotone (possibly multivalued) graph. Such a framework includes standard Navier–Stokes and power-law fluids, Bingham fluids, Herschel–Bulkley fluids, and shear-rate dependent fluids with discontinuous viscosities as special cases. We assume that the fluid adheres to the boundary.

Using tools such as the Young measures, properties of spatially dependent maximal monotone operators and Lipschitz approximations of Sobolev functions, we are able to extend the results concerning large data existence of weak solutions to those values of the power-law index that are of importance from the point of view of engineering and physical applications.

Keywords.: Incompressible fluid; power-law fluid; implicit constitutive equation; discontinuous viscosity; weak solution; existence; large data; Lipschitz approximations of Sobolev functions; Young measures

About the article

Received: 2007-11-06

Revised: 2008-05-31

Published Online: 2009-02-24

Published in Print: 2009-04-01


Citation Information: Advances in Calculus of Variations, ISSN (Online) 1864-8266, ISSN (Print) 1864-8258, DOI: https://doi.org/10.1515/ACV.2009.006.

Export Citation

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Sylwia Dudek, Piotr Kalita, and Stanisław Migórski
Computers & Mathematics with Applications, 2017
[2]
E. Bäumle and M. Růžička
SIAM Journal on Mathematical Analysis, 2017, Volume 49, Number 1, Page 115
[3]
M. BulÍček, J. Burczak, and S. Schwarzacher
SIAM Journal on Mathematical Analysis, 2016, Volume 48, Number 6, Page 4241
[4]
Kumbakonam R. Rajagopal and Giuseppe Saccomandi
Frontiers in Materials, 2016, Volume 3
[5]
Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, and Emil Wiedemann
Nonlinearity, 2015, Volume 28, Number 11, Page 3873
[6]
V.J. Ervin, Hyesuk Lee, and A.J. Salgado
Journal of Mathematical Analysis and Applications, 2016, Volume 433, Number 1, Page 603
[7]
Sylwia Dudek, Piotr Kalita, and Stanisław Migórski
Zeitschrift für angewandte Mathematik und Physik, 2015, Volume 66, Number 5, Page 2625
[8]
Tereza Perlácová and Vít Pru˚ša
Journal of Non-Newtonian Fluid Mechanics, 2015, Volume 216, Page 13
[9]
Piotr Gwiazda, Agnieszka Świerczewska-Gwiazda, Petra Wittbold, and Aleksandra Zimmermann
Journal of Functional Analysis, 2014, Volume 267, Number 8, Page 2846
[10]
Agnieszka Świerczewska-Gwiazda
Nonlinear Analysis: Theory, Methods & Applications, 2014, Volume 98, Page 48
[11]
M. Bulíček and J. Havrda
ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik, 2015, Volume 95, Number 6, Page 589
[12]
Lars Diening, Christian Kreuzer, and Endre Süli
SIAM Journal on Numerical Analysis, 2013, Volume 51, Number 2, Page 984
[13]
Miroslav Bulíček, Josef Málek, and Endre Süli
Communications in Partial Differential Equations, 2013, Volume 38, Number 5, Page 882
[14]
Miroslav Bulíček, Piotr Gwiazda, Josef Málek, and Agnieszka Świerczewska-Gwiazda
SIAM Journal on Mathematical Analysis, 2012, Volume 44, Number 4, Page 2756
[15]
Hannes Eberlein and Michael Růžička
Journal of Mathematical Fluid Mechanics, 2012, Volume 14, Number 3, Page 485
[16]
Miroslav Bulíček, Luisa Consiglieri, and Josef Málek
Nonlinear Analysis: Real World Applications, 2011, Volume 12, Number 1, Page 571
[17]
Verena Bögelein, Frank Duzaar, Jens Habermann, and Christoph Scheven
Advances in Calculus of Variations, 2012, Volume 5, Number 1, Page 1

Comments (0)

Please log in or register to comment.
Log in