Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Calculus of Variations

Managing Editor: Duzaar, Frank / Kinnunen, Juha

Editorial Board: Armstrong, Scott N. / Balogh, Zoltán / Cardiliaguet, Pierre / Dacorogna, Bernard / Dal Maso, Gianni / DiBenedetto, Emmanuele / Fonseca, Irene / Gianazza, Ugo / Ishii, Hitoshi / Kristensen, Jan / Manfredi, Juan / Martell, Jose Maria / Mingione, Giuseppe / Nystrom, Kaj / Riviére, Tristan / Schaetzle, Reiner / Shen, Zhongwei / Silvestre, Luis / Tonegawa, Yoshihiro / Touzi, Nizar / Wang, Guofang

4 Issues per year

IMPACT FACTOR 2017: 1.676

CiteScore 2017: 1.30

SCImago Journal Rank (SJR) 2017: 2.045
Source Normalized Impact per Paper (SNIP) 2017: 1.138

Mathematical Citation Quotient (MCQ) 2016: 0.83

See all formats and pricing
More options …
Volume 6, Issue 4


A note on the stability of solutions to quasilinear elliptic equations

Jagmohan Tyagi
  • Indian Institute of Technology Gandhinagar, Vishwakarma Government Engineering College Complex, Chandkheda, Visat-Gandhinagar Highway, Ahmedabad, Gujarat, India–382424
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-12-20 | DOI: https://doi.org/10.1515/acv-2012-0014


In this note, we prove a stability theorem for a class of quasilinear elliptic equations

where , , is an open, smooth and bounded subset. We show that if u is an unstable solution of the above problem, then u vanishes at some point of . In this work, a and f may change sign.

Keywords: p-Laplacian; stability; zeros

About the article

Received: 2012-07-07

Revised: 2012-10-28

Accepted: 2012-11-05

Published Online: 2012-12-20

Published in Print: 2013-10-01

Citation Information: Advances in Calculus of Variations, Volume 6, Issue 4, Pages 483–492, ISSN (Online) 1864-8266, ISSN (Print) 1864-8258, DOI: https://doi.org/10.1515/acv-2012-0014.

Export Citation

© 2013 by Walter de Gruyter Berlin Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in