[1]

Brasco L. and Franzina G.,
An anisotropic eigenvalue problem of Stekloff type and weighted Wulff inequalities,
NoDEA Nonlinear Differential Equations Appl. 20 (2013), 1795–1830.
Google Scholar

[2]

Brasco L. and Franzina G.,
On the Hong–Krahn–Szego inequality for the *p*-Laplace operator,
Manuscripta Math. 141 (2013), 537–557.
Google Scholar

[3]

Brasco L. and Franzina G.,
Convexity properties of Dirichlet integrals and Picone-type inequalities,
Kodai Math. J. 37 (2014), 769–799.
Google Scholar

[4]

Brasco L., Lindgren E. and Parini E.,
The fractional Cheeger problem,
Interfaces Free Bound. 16 (2014), 419–458.
Google Scholar

[5]

Caffarelli L. and Silvestre L.,
An extension problem related to the fractional Laplacian,
Comm. Partial Differential Equations 32 (2007), 1245–1260.
Google Scholar

[6]

Cuesta M.,
Minimax theorems on ${C}^{1}$ manifolds via Ekeland variational principle,
Abstr. Appl. Anal. 13 (2003), 757–768.
Google Scholar

[7]

Cuesta M., De Figueiredo D. G. and Gossez J.-P.,
The beginning of the Fučik spectrum for the *p*-Laplacian,
J. Differential Equations 159 (1999), 212–238.
Google Scholar

[8]

Di Castro A., Kuusi T. and Palatucci G.,
Local behavior of fractional *p*-minimizers,
preprint (2014), http://cvgmt.sns.it/paper/2379/;
to appear in Ann. Inst. H. Poincaré Anal. Non Linéaire.

[9]

Di Castro A., Kuusi T. and Palatucci G.,
Nonlocal Harnack inequalities,
J. Funct. Anal. 267 (2014), 1807–1836.
Google Scholar

[10]

Di Nezza E., Palatucci G. and Valdinoci E.,
Hitchhiker’s guide to the fractional Sobolev spaces,
Bull. Sci. Math. 136 (2012), 521–573.
Google Scholar

[11]

Drábek P. and Robinson S. B.,
Resonance problems for the *p*-Laplacian,
J. Funct. Anal. 169 (1999), 189–200.
Google Scholar

[12]

Dyda B.,
A fractional order Hardy inequality,
Illinois J. Math. 48 (2004), 575–588.
Google Scholar

[13]

Franzina G. and Palatucci G.,
Fractional *p*-eigenvalues,
Riv. Mat. Univ. Parma (N.S.) 5 (2014), 315–328.
Google Scholar

[14]

Franzina G. and Valdinoci E.,
Geometric analysis of fractional phase transition interfaces,
Geometric Properties for Parabolic and Elliptic PDEs,
Springer INdAM Ser. 2,
Springer, New York (2013), 117–130.
Google Scholar

[15]

Goyal S. and Sreenadh K.,
On the Fučik spectrum of non-local elliptic operators,
NoDEA Nonlinear Differential Equations Appl. 21 (2014), 567–588.
Google Scholar

[16]

Hong I.,
On an inequality concerning the eigenvalue problem of membrane,
Kōdai Math. Semin. Rep. 6 (1954), 113–114.
Google Scholar

[17]

Iannizzotto A. and Squassina M.,
Weyl-type laws for fractional *p*-eigenvalue problems,
Asymptot. Anal. 88 (2014), 233–245.
Google Scholar

[18]

Kassmann M.,
A priori estimates for integro-differential operators with measurable kernels,
Calc. Var. Partial Differential Equations 34 (2009), 1–21.
Google Scholar

[19]

Krahn E.,
Über Minimaleigenschaften der Kugel in drei und mehr Dimensionen,
Acta Comm. Univ. Dorpat. A9 (1926), 1–44.
Google Scholar

[20]

Kuusi T., Mingione G. and Sire Y.,
Nonlocal equations with measure data,
Comm. Math. Phys. 337 (2015), 1317–1368.
Google Scholar

[21]

Lindgren E. and Lindqvist P.,
Fractional eigenvalues,
Calc. Var. Partial Differential Equations 49 (2014), 795–826.
Google Scholar

[22]

Lindqvist P.,
Notes on the *p*-Laplace equation,
Report 102, University of Jyvaskyla, Department of Mathematics and Statistics, Jyvaskyla, 2006.
Google Scholar

[23]

Maz’ya V. and Shaposhnikova T.,
On the Bourgain, Brezis, and Mironescu theorem concerning limiting embeddings of fractional Sobolev spaces,
J. Funct. Anal. 195 (2002), 230–238.
Google Scholar

[24]

Pólya G.,
On the characteristic frequencies of a symmetric membrane,
Math. Z. 63 (1955), 331–337.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.