Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Calculus of Variations

Managing Editor: Duzaar, Frank / Kinnunen, Juha

Editorial Board: Armstrong, Scott N. / Balogh, Zoltán / Cardiliaguet, Pierre / Dacorogna, Bernard / Dal Maso, Gianni / DiBenedetto, Emmanuele / Fonseca, Irene / Gianazza, Ugo / Ishii, Hitoshi / Kristensen, Jan / Manfredi, Juan / Martell, Jose Maria / Mingione, Giuseppe / Nystrom, Kaj / Riviére, Tristan / Schaetzle, Reiner / Shen, Zhongwei / Silvestre, Luis / Tonegawa, Yoshihiro / Touzi, Nizar / Wang, Guofang


IMPACT FACTOR 2017: 1.676

CiteScore 2017: 1.30

SCImago Journal Rank (SJR) 2017: 2.045
Source Normalized Impact per Paper (SNIP) 2017: 1.138

Mathematical Citation Quotient (MCQ) 2017: 1.15

Online
ISSN
1864-8266
See all formats and pricing
More options …
Volume 11, Issue 3

Issues

𝒟1,2(ℝN) versus C(ℝN) local minimizer on manifolds and multiple solutions for zero-mass equations in ℝN

Siegfried Carl / David G. Costa
  • Corresponding author
  • Department of Mathematical Sciences, University of Nevada Las Vegas, Box 454020, Las Vegas, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hossein Tehrani
Published Online: 2017-04-08 | DOI: https://doi.org/10.1515/acv-2016-0012

Abstract

We consider functionals of the form

J(u)=12N|u|2-Nb(x)G(u)

on a C1-submanifold M of 𝒟1,2(N), N3, where G is the primitive of some “zero-mass” nonlinearity g (i.e., g(0)=0), and the weight function b:N is merely supposed to belong to L1(N)L2*2*-p(N) for some 2<p<2*, and to possess a certain decay behavior. Let V be the subspace of 𝒟1,2(N) given by V:={v𝒟1,2(N):vC(N) with supxN(1+|x|N-2)|v(x)|<}. We prove that a local minimizer of the constrained functional J|M with respect to the V-topology must be a local minimizer with respect to the “bigger” 𝒟1,2(N)-topology. This result allows us to prove the existence of multiple nontrivial solutions of the zero-mass equation -Δu=b(x)g(u) in N, where g:R is a subcritical nonlinearity, which is superlinear at zero and at .

Keywords: Minimizer on manifold; multiple solutions; zero-mass equations

MSC 2010: 35J15; 35J20

References

  • [1]

    W. Allegretto and P. Odiobala, Nonpositone elliptic problems in n, Proc. Amer. Math. Soc. 123 (1995), no. 2, 533–541. Google Scholar

  • [2]

    C. Alves, M. Souto and M. Montenegro, Existence of solution for two classes of elliptic problems in n with zero mass, J. Differential Equations 252 (2012), no. 10, 5735–5750. Google Scholar

  • [3]

    A. Ambrosetti, V. Felli and A. Malchiodi, Ground states of nonlinear Schrödinger equations with potentials vanishing at infinity, J. Eur. Math. Soc. (JEMS) 7 (2005), no. 1, 117–144. Google Scholar

  • [4]

    J. G. Azorero, I. P. Alonso and J. J. Manfredi, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), no. 3, 385–404. CrossrefGoogle Scholar

  • [5]

    A. Azzollini and A. Pomponio, On a “zero mass” nonlinear Schrödinger equation, Adv. Nonlinear Stud. 7 (2007), no. 4, 599–627. Google Scholar

  • [6]

    A. Azzollini and A. Pomponio, Compactness results and applications to some “zero mass” elliptic problems, Nonlinear Anal. 69 (2008), no. 10, 3559–3576. Web of ScienceCrossrefGoogle Scholar

  • [7]

    H. Berestycki and P. Lions, Nonlinear scalar field equations. I: Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 313–345. CrossrefGoogle Scholar

  • [8]

    H. Berestycki and P. Lions, Nonlinear scalar field equations. II: Existence of a ground state, Arch. Ration. Mech. Anal. 82 (1983), 347–375. CrossrefGoogle Scholar

  • [9]

    L. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Comm. Pure Appl. Math. 42 (1989), no. 3, 271–297. CrossrefGoogle Scholar

  • [10]

    P. Candito, S. Carl and R. Livrea, Critical points in open sublevels and multiple solutions for parameter-depending quasilinear elliptic equations, Adv. Differential Equations 19 (2014), no. 11–12, 1021–1042. Google Scholar

  • [11]

    S. Carl, D. Costa and H. Tehrani, Extremal and sign-changing solutions of supercritical logistic-type equations in n, Calc. Var. Partial Differential Equations 54 (2015), no. 4, 4143–4164. Google Scholar

  • [12]

    S. Carl, D. Costa and H. Tehrani, 𝒟1,2(n) versus C(n) local minimizer and a Hopf-type maximum principle, J. Differential Equations 261 (2016), no. 3, 2006–2025. Google Scholar

  • [13]

    S. Carl and D. Motreanu, Constant-sign and sign-changing solutions for nonlinear eigenvalue problems, Nonlinear Anal. 68 (2008), 2668–2676. CrossrefWeb of ScienceGoogle Scholar

  • [14]

    S. Carl and D. Motreanu, Multiple solutions for elliptic systems via trapping regions and related nonsmooth potentials, Appl. Anal. 94 (2015), no. 8, 1594–1613. Web of ScienceCrossrefGoogle Scholar

  • [15]

    I. Ekeland, On the variational principle, J. Math. Anal. Appl. 47 (1974), 324–353. CrossrefGoogle Scholar

  • [16]

    M. Flucher and S. Müller, Radial symmetry and decay rate of variational ground states in the zero mass case, SIAM J. Math. Anal. 29 29 (1998), no. 3, 712–719. CrossrefGoogle Scholar

  • [17]

    J. Giacomoni, I. Schindler and P. Takáč, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 1, 117–158. Google Scholar

  • [18]

    D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer, Berlin, 1983. Google Scholar

  • [19]

    Z. Guo and Z. Zhang, W1,p versus C1 local minimizers and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 286 (2003), no. 1, 32–50. Google Scholar

  • [20]

    A. Iannizzotto, S. Mosconi and M. Squassina, Hs versus C0-weighted minimizers, NoDEA Nonlinear Differential Equations Appl. 22 (2015), no. 3, 477–497. Web of ScienceGoogle Scholar

  • [21]

    A. Khan and M. Motreanu, Local minimizers versus X-local minimizers, Optim. Lett. 7 (2013), no. 5, 1027–1033. Web of ScienceCrossrefGoogle Scholar

  • [22]

    D. Siegal and E. Talvila, Pointwise growth estimates of the Riesz potential, Dyn. Contin. Discrete Impulsive Syst. 5 (1999), no. 1–4, 185–194. Google Scholar

  • [23]

    K. Sreenadh and S. Tiwari, On W1,p(x) versus C1 local minimizers of functionals related to p(x)-Laplacian, Appl. Anal. 92 (2013), no. 6, 1271–1282. Web of ScienceGoogle Scholar

  • [24]

    M. Struwe, Variational Methods, Springer, Berlin, 1990. Google Scholar

  • [25]

    Z. Tan and F. Fang, Orlicz–Sobolev versus Hölder local minimizer and multiplicity results for quasilinear elliptic equations, J. Math. Anal. Appl. 402 (2013), no. 1, 348–370. CrossrefGoogle Scholar

  • [26]

    H. Tehrani, H1 versus C1 local minimizers on manifolds, Nonlinear Anal. 26 (1996), no. 9, 1491–1509. Google Scholar

  • [27]

    Z.-Q. Wang, On a superlinear elliptic equation, Ann. Inst. Henri Poincaré 8 (1991), 43–57. CrossrefGoogle Scholar

  • [28]

    P. Winkert, Local C1(Ω¯)-minimizers versus local W1,p(Ω)-minimizers of nonsmooth functionals, Nonlinear Anal. 72 (2010), no. 11, 4298–4303. Google Scholar

About the article


Received: 2016-03-20

Accepted: 2017-03-04

Published Online: 2017-04-08

Published in Print: 2018-07-01


Citation Information: Advances in Calculus of Variations, Volume 11, Issue 3, Pages 257–272, ISSN (Online) 1864-8266, ISSN (Print) 1864-8258, DOI: https://doi.org/10.1515/acv-2016-0012.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in