[1]

D. R. Adams,
Choquet integrals in potential theory,
Publ. Mat. 43 (1998), 3–66.
Google Scholar

[2]

D. R. Adams and L. I. Hedberg,
Function Spaces and Potential Theory,
Springer, Berlin, 1996.
Google Scholar

[3]

A. Cianchi, E. Lutwak, D. Yang and G. Zhang,
Affine Moser–Trudinger and Morrey–Sobolev inequalities,
Calc. Var. Partial Differential Equations 36 (2009), 419–436.
Web of ScienceCrossrefGoogle Scholar

[4]

I. Dolcetta and P. Lions,
Viscosity Solutions and Applications,
Springer, Berlin, 1995.
Google Scholar

[5]

L. C. Evans and R. F. Gariepy,
Measure Theory and Fine Properties of Functions,
CRC Press, Boca Raton, 1992.
Google Scholar

[6]

M. Flucher,
Variational Problems with Concentration,
Progr. Nonlinear Differential Equations Appl. 36,
Birkhäuser, Basel, 1999.
Google Scholar

[7]

C. Haberl and F. E. Schuster,
Asymmetric affine ${L}_{p}$ Sobolev inequalities,
J. Funct. Anal. 257 (2009), 641–658.
Web of ScienceGoogle Scholar

[8]

C. Haberl, F. E. Schuster and J. Xiao,
An asymmetric affine Pólya–Szegö principle,
Math. Ann. 352 (2012), 517–542.
CrossrefGoogle Scholar

[9]

J. Heinonen, T. Kilpeläinen and O. Martio,
Nonlinear Potential Theory of Degenerate Elliptic Equations,
Oxford University Press, Oxford, 1993.
Google Scholar

[10]

R. Jensen,
Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient,
Arch. Ration. Mech. Anal. 123 (1993), 51–74.
CrossrefGoogle Scholar

[11]

V. Julin and P. Juutinen,
A new proof for the equivalence of weak and viscosity solutions for the *p*-Laplace equation,
Comm. Partial Differential Equations 37 (2012), 934–946.
CrossrefGoogle Scholar

[12]

P. Juutinen,
Minimization Problems for Lipschitz Functions via Viscosity Solutions,
Ann. Acad. Sci. Fenn. Math. Diss. 115,
Suomalainen Tiedeakatemia, Helsinki, 1998.
Google Scholar

[13]

P. Juutinen, P. Lindqvist and J. Manfredi,
The $\mathrm{\infty}$-eigenvalue problem,
Arch. Ration. Mech. Anal. 148 (1999), 89–105.
CrossrefGoogle Scholar

[14]

P. Juutinen, P. Lindqvist and J. Manfredi,
On the equivalence of viscosity solutions and weak solutions for a quasi-linear equation,
SIAM J. Math. Anal. 33 (2001), 699–717.
CrossrefGoogle Scholar

[15]

B. Kawohl and V. Fridman,
Isoperimetric estimates for the first eigenvalue of the *p*-Laplace operator and the Cheeger constant,
Comment. Math. Univ. Carolin. 44 (2003), 659–667.
Google Scholar

[16]

P. Lindqvist and J. Manfredi,
The Harnack inequality for $\mathrm{\infty}$-harmonic functions,
Electron. J. Differential Equations 5 (1995), 1–5.
Google Scholar

[17]

P. Lindqvist and J. Manfredi,
Note on $\mathrm{\infty}$-harmonic functions,
Rev. Mat. Univ. Complutense Madr. 10 (1997), 1–9.
Google Scholar

[18]

M. Ludwig, J. Xiao and G. Zhang,
Sharp convex Lorentz–Sobolev inequalities,
Math. Ann. 350 (2011), 169–197.
CrossrefWeb of ScienceGoogle Scholar

[19]

E. Lutwak, D. Yang and G. Zhang,
Sharp affine ${L}_{p}$ Sobolev inequalities,
J. Differential Geom. 62 (2002), 17–38.
Google Scholar

[20]

E. Lutwak, D. Yang and G. Zhang,
Optimal Sobolev norms and the ${L}_{p}$ Minkowski problem,
Int. Math. Res. Not. IMRN 2006 (2006), Article ID 62987.
Google Scholar

[21]

J. Malý and W. P. Ziemer,
Fine Regularity of Solutions of Elliptic Partial Differential Equations,
Math. Surveys Monogr. 51,
American Mathematical Society, Providence, 1997.
Google Scholar

[22]

V. Maz’ya,
Sobolev Spaces,
Springer, Berlin, 1985.
Google Scholar

[23]

V. Maz’ya,
Lectures on isoperimetric and isocapacitary inequalities in the theory of Sobolev spaces,
Contemp. Math. 338 (2003), 307–340.
CrossrefGoogle Scholar

[24]

T. Wang,
The affine Sobolev–Zhang inequality on $BV({\mathbb{R}}^{n})$,
Adv. Math. 230 (2012), 2457–2473.
Google Scholar

[25]

J. Xiao,
The *p*-Faber–Krahn inequality noted,
Around the Research of Vladimir Maz’ya. I,
Int. Math. Ser. (N. Y.) 11,
Springer, New York (2010), 373–390.
Web of ScienceGoogle Scholar

[26]

J. Xiao,
The sharp Sobolev and isoperimetric inequalities split twice,
Adv. Math. 211 (2007), 417–435;
corrigendum, Adv. Math. 268 (2015) 906–914.
Web of ScienceCrossrefGoogle Scholar

[27]

J. Xiao,
The *p*-affine capacity,
J. Geom. Anal. 26 (2016), 947–966.
CrossrefWeb of ScienceGoogle Scholar

[28]

J. Xiao and N. Zhang,
The relative *p*-affine capacity,
Proc. Amer. Math. Soc. 144 (2016), 3537–3554.
Web of ScienceCrossrefGoogle Scholar

[29]

Z. Zhai,
Note on affine Gagliardo–Nirenberg inequalities,
Potential Anal. 34 (2011), 1–12.
Web of ScienceCrossrefGoogle Scholar

[30]

G. Zhang,
The affine Sobolev inequality,
J. Differential Geom. 53 (1999), 183–202.
CrossrefGoogle Scholar

[31]

W. P. Ziemer,
Weakly Differentiable Functions,
Grad. Texts in Math. 120,
Springer, Berlin, 1989.
Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.