[1]

Ambrosio L. and Ghiraldin F.,
Flat chains of finite size in metric spaces,
Ann. Inst. H. Poincaré Anal. Non Linéaire 30 (2013), no. 1, 79–100.
Google Scholar

[2]

Ambrosio L. and Katz M. G.,
Flat currents modulo *p* in metric spaces and filling radius inequalities,
Comment. Math. Helv. 86 (2011), no. 3, 557–592.
Google Scholar

[3]

Ambrosio L. and Kirchheim B.,
Currents in metric spaces,
Acta Math. 185 (2000), no. 1, 1–80.
Google Scholar

[4]

Ambrosio L. and Wenger S.,
Rectifiability of flat chains in Banach spaces with coefficients in ${\mathbb{Z}}_{p}$,
Math. Z. 268 (2011), no. 1–2, 477–506.
Google Scholar

[5]

Brothers J. E.,
Some open problems in geometric measure theory and its applications suggested by participants of the 1984 AMS Summer Institute,
Geometric Measure Theory and the Calculus of Variations (Arcata 1984),
Proc. Sympos. Pure Math. 44,
American Mathematical Society, Providence (1986), 441–464.
Google Scholar

[6]

De Pauw T. and Hardt R.,
Rectifiable and flat *G* chains in a metric space,
Amer. J. Math. 134 (2012), no. 1, 1–69.
Google Scholar

[7]

Federer H.,
Geometric Measure Theory,
Grundlehren Math. Wiss. 153,
Springer, New York, 1969.
Google Scholar

[8]

Federer H. and Fleming W. H.,
Normal and integral currents,
Ann. of Math. (2) 72 (1960), 458–520.
Google Scholar

[9]

Krantz S. G. and Parks H. R.,
Geometric Integration Theory,
Birkhäuser, Boston, 2008.
Google Scholar

[10]

Morgan F.,
A regularity theorem for minimizing hypersurfaces modulo ν,
Trans. Amer. Math. Soc. 297 (1986), no. 1, 243–253.
Google Scholar

[11]

Morgan F.,
Geometric Measure Theory. A Beginner’s Guide, 4th ed.,
Elsevier, Amsterdam, 2009.
Google Scholar

[12]

Simon L.,
Lectures on Geometric Measure Theory,
Australian National University, Canberra, 1983.
Google Scholar

[13]

White B.,
The structure of minimizing hypersurfaces mod 4,
Invent. Math. 53 (1979), no. 1, 45–58.
Google Scholar

[14]

White B.,
A regularity theorem for minimizing hypersurfaces modulo *p*,
Geometric Measure Theory and the Calculus Of Variations (Arcata 1984),
Proc. Sympos. Pure Math. 44,
American Mathematical Society, Providence (1986), 413–427.
Google Scholar

[15]

White B.,
Rectifiability of flat chains,
Ann. of Math. (2) 150 (1999), no. 1, 165–184.
Google Scholar

[16]

Ziemer W. P.,
Integral currents $\mathrm{mod}$ 2,
Trans. Amer. Math. Soc. 105 (1962), 496–524.
Google Scholar

## Comments (0)