[1]

L. Ambrosio, G. Crippa and S. Maniglia,
Traces and fine properties of a *BD* class of vector fields and applications,
Ann. Fac. Sci. Toulouse Math. (6) 14 (2005), no. 4, 527–561.
CrossrefGoogle Scholar

[2]

L. Ambrosio, N. Fusco and D. Pallara,
Functions of Bounded Variation and Free Discontinuity Problems,
Oxford Math. Monogr.,
Clarendon Press, Okford, 2000.
Google Scholar

[3]

G. Anzellotti,
Pairings between measures and bounded functions and compensated compactness,
Ann. Mat. Pura Appl. (4) 135 (1983), 293–318.
CrossrefGoogle Scholar

[4]

H. Brezis,
Functional Analysis, Sobolev Spaces and Partial Differential Equations,
Universitext,
Springer, New York, 2011.
Google Scholar

[5]

G.-Q. Chen and H. Frid,
Divergence-measure fields and hyperbolic conservation laws,
Arch. Ration. Mech. Anal. 147 (1999), no. 2, 89–118.
CrossrefGoogle Scholar

[6]

G.-Q. Chen and H. Frid,
Extended divergence-measure fields and the Euler equations for gas dynamics,
Comm. Math. Phys. 236 (2003), no. 2, 251–280.
CrossrefGoogle Scholar

[7]

G.-Q. Chen and M. Torres,
Divergence-measure fields, sets of finite perimeter, and conservation laws,
Arch. Ration. Mech. Anal. 175 (2005), no. 2, 245–267.
CrossrefGoogle Scholar

[8]

G.-Q. Chen and M. Torres,
On the structure of solutions of nonlinear hyperbolic systems of conservation laws,
Commun. Pure Appl. Anal. 10 (2011), no. 4, 1011–1036.
Web of ScienceCrossrefGoogle Scholar

[9]

G.-Q. Chen, M. Torres and W. P. Ziemer,
Gauss–Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws,
Comm. Pure Appl. Math. 62 (2009), no. 2, 242–304.
CrossrefGoogle Scholar

[10]

G. E. Comi and M. Torres,
One-sided approximation of sets of finite perimeter,
Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl. 28 (2017), no. 1, 181–190.
CrossrefGoogle Scholar

[11]

C. M. Dafermos,
Hyperbolic Conservation Laws in Continuum Physics, 4th ed.,
Grundlehren Math. Wiss. 325,
Springer, Berlin, 2016.
Google Scholar

[12]

E. De Giorgi,
Nuovi teoremi relativi alle misure $(r-1)$-dimensionali in uno spazio ad *r* dimensioni,
Ric. Mat. 4 (1955), 95–113.
Google Scholar

[13]

M. Degiovanni, A. Marzocchi and A. Musesti,
Cauchy fluxes associated with tensor fields having divergence measure,
Arch. Ration. Mech. Anal. 147 (1999), no. 3, 197–223.
CrossrefGoogle Scholar

[14]

L. C. Evans and R. F. Gariepy,
Measure Theory and Fine Properties of Functions,
Stud. Adv. Math.,
CRC Press, Boca Raton, 1992.
Google Scholar

[15]

K. Falconer,
Fractal Geometry. Mathematical Foundations and Applications,
John Wiley & Sons, Chichester, 1990.
Google Scholar

[16]

H. Federer,
A note on the Gauss–Green theorem,
Proc. Amer. Math. Soc. 9 (1958), 447–451.
CrossrefGoogle Scholar

[17]

H. Federer,
Geometric Measure Theory,
Grundlehren Math. Wiss. 153,
Springer, New York, 1969.
Google Scholar

[18]

H. Frid,
Divergence-measure fields on domains with Lipschitz boundary,
Hyperbolic Conservation Laws and Related Analysis with Applications,
Springer Proc. Math. Stat. 49,
Springer, Heidelberg (2014), 207–225.
Google Scholar

[19]

H. Hakkarainen and J. Kinnunen,
The BV-capacity in metric spaces,
Manuscripta Math. 132 (2010), no. 1–2, 51–73.
Web of ScienceCrossrefGoogle Scholar

[20]

J. Heinonen, T. Kilpeläinen and O. Martio,
Nonlinear Potential Theory of Degenerate Elliptic Equations,
Oxford Math. Monogr.,
The Clarendon Press, Oxford, 1993.
Google Scholar

[21]

N. Marola, M. Miranda, Jr. and N. Shanmugalingam,
Boundary measures, generalized Gauss–Green formulas, and mean value property in metric measure spaces,
Rev. Mat. Iberoam. 31 (2015), no. 2, 497–530.
Web of ScienceCrossrefGoogle Scholar

[22]

V. Maz’ya,
Sobolev Spaces with Applications to Elliptic Partial Differential Equations, augmented ed.,
Grundlehren Math. Wiss. 342,
Springer, Heidelberg, 2011.
Web of ScienceGoogle Scholar

[23]

N. C. Phuc and M. Torres,
Characterizations of the existence and removable singularities of divergence-measure vector fields,
Indiana Univ. Math. J. 57 (2008), no. 4, 1573–1597.
Web of ScienceCrossrefGoogle Scholar

[24]

F. Schuricht,
A new mathematical foundation for contact interactions in continuum physics,
Arch. Ration. Mech. Anal. 184 (2007), no. 3, 495–551.
CrossrefWeb of ScienceGoogle Scholar

[25]

M. Šilhavý,
Divergence measure fields and Cauchy’s stress theorem,
Rend. Semin. Mat. Univ. Padova 113 (2005), 15–45.
Google Scholar

[26]

M. Šilhavý,
Divergence measure vectorfields: Their structure and the divergence theorem,
Mathematical Modelling of Bodies with Complicated Bulk and Boundary Behavior,
Quad. Mat. 20,
Seconda Università degli Studi di Napoli, Caserta (2007), 217–237.
Google Scholar

[27]

M. Šilhavý,
The divergence theorem for divergence measure vectorfields on sets with fractal boundaries,
Math. Mech. Solids 14 (2009), no. 5, 445–455.
Web of ScienceCrossrefGoogle Scholar

[28]

A. I. Vol’pert,
Spaces $\mathrm{BV}$ and quasilinear equations,
Mat. Sb. (N.S.) 73 (115) (1967), 255–302.
Google Scholar

[29]

A. I. Vol’pert and S. I. Hudjaev,
Analysis in Classes of Discontinuous Functions and Equations of Mathematical Physics,
Mechanics: Anal. 8,
Martinus Nijhoff Publishers, Dordrecht, 1985.
Google Scholar

[30]

W. P. Ziemer,
Cauchy flux and sets of finite perimeter,
Arch. Ration. Mech. Anal. 84 (1983), no. 3, 189–201.
CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.