[1]

L. V. Ahlfors,
Moebius Transformations in Several Dimensions (in Russian),
Mir, Moscow, 1986.
GoogleÂ Scholar

[2]

S. S. Antman,
Nonlinear Problems of Elasticity,
Appl. Math. Sci. 107,
Springer, New York, 1995.
GoogleÂ Scholar

[3]

K. Astala, T. Iwaniec and G. Martin,
Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane,
Princeton Math. Ser. 48,
Princeton University, Princeton, 2009.
GoogleÂ Scholar

[4]

K. Astala, T. Iwaniec and G. Martin,
Deformations of annuli with smallest mean distortion,
Arch. Ration. Mech. Anal. 195 (2010), no. 3, 899â921.
CrossrefWebÂ ofÂ ScienceGoogleÂ Scholar

[5]

J. M. Ball,
Convexity conditions and existence theorems in nonlinear elasticity,
Arch. Ration. Mech. Anal. 63 (1976/77), no. 4, 337â403.
CrossrefGoogleÂ Scholar

[6]

F. Bethuel,
The approximation problem for Sobolev maps between two manifolds,
Acta Math. 167 (1991), no. 3â4, 153â206.
CrossrefGoogleÂ Scholar

[7]

J.-C. Bourgoin,
The minimality of the map $\frac{x}{\xe2\x88\u013dx\xe2\x88\u013d}$ for weighted energy,
Calc. Var. Partial Differential Equations 25 (2006), no. 4, 469â489.
GoogleÂ Scholar

[8]

H. Brezis, J.-M. Coron and E. H. Lieb,
Harmonic maps with defects,
Comm. Math. Phys. 107 (1986), no. 4, 649â705.
CrossrefGoogleÂ Scholar

[9]

P. G. Ciarlet,
Mathematical Elasticity. Vol. I. Three-dimensional Elasticity,
Stud. Math. Appl. 20,
North-Holland, Amsterdam, 1988.
GoogleÂ Scholar

[10]

M. CsĂśrnyei, S. Hencl and J. MalĂ˝,
Homeomorphisms in the Sobolev space ${W}^{1,n-1}$,
J. Reine Angew. Math. 644 (2010), 221â235.
WebÂ ofÂ ScienceGoogleÂ Scholar

[11]

B. Dacorogna,
Introduction to the Calculus of Variations,
Imperial College, London, 2004.
GoogleÂ Scholar

[12]

M.-C. Hong,
On the minimality of the *p*-harmonic map $\frac{x}{|x|}:{B}^{n}\xe2\x86\x92{S}^{n-1}$,
Calc. Var. Partial Differential Equations 13 (2001), no. 4, 459â468.
GoogleÂ Scholar

[13]

T. Iwaniec, L. V. Kovalev and J. Onninen,
The Nitsche conjecture,
J. Amer. Math. Soc. 24 (2011), no. 2, 345â373.
CrossrefGoogleÂ Scholar

[14]

T. Iwaniec and J. Onninen,
*p*-harmonic energy of deformations between punctured balls,
Adv. Calc. Var. 2 (2009), no. 1, 93â107.
WebÂ ofÂ ScienceGoogleÂ Scholar

[15]

T. Iwaniec and J. Onninen,
*n*-harmonic mappings between annuli: the art of integrating free Lagrangians,
Mem. Amer. Math. Soc. 218 (2012), no. 1023, 1â105.
GoogleÂ Scholar

[16]

J. Jost and X. Li-Jost,
Calculus of Variations,
Cambridge Stud. Adv. Math. 64,
Cambridge University, Cambridge, 1998.
GoogleÂ Scholar

[17]

D. Kalaj,
On the Nitsche conjecture for harmonic mappings in ${\mathrm{\xe2\x84\x9d}}^{2}$ and ${\mathrm{\xe2\x84\x9d}}^{3}$,
Israel J. Math. 150 (2005), 241â251.
GoogleÂ Scholar

[18]

D. Kalaj,
Deformations of annuli on Riemann surfaces and the generalization of Nitsche conjecture,
J. Lond. Math. Soc. (2) 93 (2016), no. 3, 683â702.
CrossrefWebÂ ofÂ ScienceGoogleÂ Scholar

[19]

D. Kalaj,
$(n,\mathrm{\u010e\x81})$-harmonic mappings and energy minimal deformations between annuli,
Calc. Var. Partial Differential Equations 58 (2019), no. 2, Article ID 51.
WebÂ ofÂ ScienceGoogleÂ Scholar

[20]

A. Koski and J. Onninen,
Radial symmetry of *p*-harmonic minimizers,
Arch. Ration. Mech. Anal. 230 (2018), no. 1, 321â342.
WebÂ ofÂ ScienceCrossrefGoogleÂ Scholar

[21]

A. Lyzzaik,
The modulus of the image annuli under univalent harmonic mappings and a conjecture of Nitsche,
J. London Math. Soc. (2) 64 (2001), no. 2, 369â384.
CrossrefGoogleÂ Scholar

[22]

J. C. C. Nitsche,
Mathematical notes: On the module of doubly-connected regions under harmonic mappings,
Amer. Math. Monthly 69 (1962), no. 8, 781â782.
CrossrefGoogleÂ Scholar

[23]

T. Rado and P. V. Reichelderfer,
Continuous Transformations in Analysis. With an Introduction to Algebraic Topology,
Grundlehren Math. Wiss. 75,
Springer, Berlin, 1955.
GoogleÂ Scholar

[24]

R. Schoen and S. T. Yau,
Lectures on Harmonic Maps,
International Press, Cambridge, 1997.
GoogleÂ Scholar

[25]

M. Vuorinen,
Conformal Geometry and Quasiregular Mappings,
Lecture Notes in Math. 1319,
Springer, Berlin, 1988.
GoogleÂ Scholar

[26]

A. Weitsman,
Univalent harmonic mappings of annuli and a conjecture of J.âC.âC. Nitsche,
Israel J. Math. 124 (2001), 327â331.
CrossrefGoogleÂ Scholar

## CommentsÂ (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.