Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Veterinaria

The Journal of University of Belgrade

4 Issues per year


CiteScore 2016: 0.65

SCImago Journal Rank (SJR) 2016: 0.388
Source Normalized Impact per Paper (SNIP) 2016: 0.605

Open Access
Online
ISSN
1820-7448
See all formats and pricing
More options …

Mechanisms of Resistance to Quinolones and Epidemiological Significance of Salmonella spp.

Maja Velhner
Published Online: 2016-06-28 | DOI: https://doi.org/10.1515/acve-2016-0013

Abstract

Bacteria develop resistance to antimicrobial agents by a number of different mechanisms. The resistance to (fluoro)quinolones in Salmonella is of particular importance especially if therapy in humans is required. For decades there has been a significant interest in studying the biology of Salmonella because these bacteria are among the leading causes of foodborne illnesses around the globe. To this date, two main mechanisms of quinolone resistance have been established: alteration in the targets for quinolones, decreased accumulation inside bacteria due to impermeability of the membrane and/or an over expression of the efflux pump systems. Both of these mechanisms are chromosomally mediated. Furthermore, mobile elements have been described carrying the qnr gene which confers resistance to quinolones. The plasmid encoded QNR proteins belong to the pentapeptide repeat family of proteins. The plasmid mediated quinolone resistance (PMQR) is often associated with the resistance to beta lactam antibiotics. It was noticed that PMQR is backing up chromosomal mutations for quinolone resistance, hence becoming an important resistance mechanism worldwide. Even with our knowledge expanding over the years, it is not possible to predict how bacteria will respond in the future, if they are exposed to new external challenges. The possibility that they will find a way to survive by introducing new mutations or by exchanging mobile genetic elements and subsequently developing resistance to survive in the environment should not be underestimated.

Keywords: salmonella; resistance; quinolones; efflux pump; PMQR

References

  • 1. Galanis E., Lo Fo Wong DM, Patrick ME, Binsztein N, Cieslik A, Chalermchikit T, Aidara- Kane A, Ellis A, Angulo FJ, Wegener HC: Web-based Surveillance and global Salmonella distribution, 2000-2002. Emerg Infect Dis 2006, 12:381-388.CrossrefGoogle Scholar

  • 2. Petty NK, Ben Zakour NL, Stanton-Cook M, Skippington E, Totsika M, Forde BM, Phan MD, Gomes Moriel D, Peters KM, Davies M, Rogers BA, Dougan G, Rodriguez-Baño J, Pascual A, Pitout JDD, Upton M, Paterson DL, Walsh TR, Schembri MA, Beatson SA.: Global dissemination of a multidrug resistant Escherichia coli clone. P Natl Acad Sci USA, 111:5694-5699, 2014.CrossrefGoogle Scholar

  • 3. Clinical and Laboratory Standards Institute 2015: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard-Tenth Edition. CLSI document M07-A10. CLSI Wayne, PA, USA.Google Scholar

  • 4. Clinical and Laboratory Standards Institute, 2015: Performance Standards for Antimicrobial Susceptibility Testing; Twenty-Fifth Informational Supplement. Clinical and Laboratory Standards Institute document M100-S25, CLSI, Wayne, PA, USA.Google Scholar

  • 5. European Committee on Antimicrobial Susceptibility Testing, European Society of Clinical Microbiology and Infectious Diseases, 2016, http://www.eucast.org/Google Scholar

  • 6. Hopkins KL., Davies RH, Threlfall EJ.: Mechanisms of quinolone resistance in Escherichia coli and Salmonella: recent developments. Int J Antimicrob Ag 2005, 25: 358-373CrossrefGoogle Scholar

  • 7. Giraud E, Baucheron S, Cloeckaert A: Resistance to fluoroquinolones in Salmonella: emerging mechanisms and resistance prevention strategies. Microbes and Infect 2006, 8:1937-1944.Google Scholar

  • 8. Giraud E, Brisabois A, Martel JL, Chaslus-Dancla E: Comparative studies of mutations in animal isolates and experimental in vitro-and in vivo-selected mutants of Salmonella spp. suggest a counterselection of highly fl uoroquinolone-resistant strains in the field. Antimicrob Agents Ch 1999, 43:2131-2137.Google Scholar

  • 9. Velhner M. and Stojanović D: Mutational polymorphism in the bacterial topoisomerase genes driven by treatment with quinolones. In: Logie, C. (editor), Point Mutation 2012, 185-210. InTech, Croatia.Google Scholar

  • 10. Cui S, Li J, Sun Z, Hu C, Jin S, Guo Y, Ran L, Ma Y: Ciprofl oxacin-resistant Salmonella enterica serotype Typhimurium, China. Emerg Infect Dis 2008, 14: 493-495.CrossrefGoogle Scholar

  • 11. Guerra B, Malorny B, Schroeter A, Helmuth R: Multiple resistance mechanisms in fluoroquinolone-resistant Salmonella isolates from Germany. Antimicrob Agents Ch 2003, 47:2059.CrossrefGoogle Scholar

  • 12. Threlfall J E: Epidemic Salmonella Typhimurium DT 104-a truly international multiresistant clone. J Antimicrob Chemoth 2000 46:7-10.CrossrefGoogle Scholar

  • 13. Le Hello S, Hendriksen RS, Doublet B, Fisher I, Nielsen EM, Whichard JM, Bouchrif B, Fashae K, Granier SA, Jourdan-Da Silva N, Cloeckaert A, Threlfall EJ, Angulo FJ, Aarestrup FM, Wain J, Weill FX: International spread of epidemic population of Salmonella enterica serotype Kentucky ST198 resistant to ciprofl oxacin. J Infect Dis 2011, 204:675-684.CrossrefGoogle Scholar

  • 14. Le Hello S, Harrois D, Bouchrif B, Sontag L, Elhani D, Guibert V. Zerouali K, Weill XF. Highly drug-resistant Salmonella enterica serotype Kentucky ST198-X1: a microbiology study. Lancet Infect Dis 2013, 13:672-679, published on line 2013a: http://dx.doi.org/10.1016/S1473-3099(13)70141-5CrossrefGoogle Scholar

  • 15. Nógrády N, Tóth A, Kostyák A, Pászti J, Nagy B: Emergence of multidrug-resistant clones of Salmonella Infantis in broiler chickens and humans in Hungary. J Antimicrob Chemoth 2007, 60:645-648.CrossrefGoogle Scholar

  • 16. Rašeta M., Teodorović V., Bunčić O., Katić V., Branković-Lazić I., Polaček V., Vidanović D.: Antibiotic resistance and molecular studies on Salmonella enterica subspecies enterica serovar Infantis isolated in human cases and broiler carcasses. Acta Vet Beograd 2014, 64:257-267.Web of ScienceGoogle Scholar

  • 17. Velhner M, Kozoderović G, Grego E, Galić N, Stojanov I, Jelesić Z, and Kehrenberg C: Clonal spread of Salmonella enterica serovar Infantis in Serbia: acquisition of mutations in the topoisomerase genes gyrA and parC leads to increased resistance to fluoroquinolones. Zoonoses and Public Hlth 2014, 61:364-370Web of ScienceGoogle Scholar

  • 18. Shahada F, Chuma T, Tobata T, Okamoto K, Sueyoshi M, Takase K: Molecular epidemiology of antimicrobial resistance among Salmonella enterica serovar Infanits from poultry in Kagoshima, Japan. Int J Antimicrob Ag 2006, 28:302-307. CrossrefGoogle Scholar

  • 19. Gal-Mor O, Valinsky L, Weinberger M, Guy S, Jaffe J, Schorr YI, Raisfeld A, Agmon V, Nissan I: Multidrug-resistant Salmonella enterica serovar Infantis, Israel. Emerg Infect Dis 2010, 16:1754-1757.CrossrefGoogle Scholar

  • 20. Hauser E, Tietze E, Helmuth R, Junker E, Prager R, Schroeter A, Rabsch W, Fruth A, Toboldt A, Malrony B: Clonal dissemination of Salmonella enterica serovar Infantis in Germany. Foodborne Pathog Dis 2012, 9:352-360.CrossrefGoogle Scholar

  • 21. Aviv G, Tsyba K, Steck N, Salmon-Divon M, Cornelius A, Rahav G, Grassl GA, Gal-Mor O: A unique megaplasmid contributes to stress tolerance and pathogenicity of an emergent Salmonella enterica serovar Infantis strain. Environ Microbiol 2014, 16:977-994.Web of ScienceCrossrefGoogle Scholar

  • 22. Chiu CH, Wu TL, Su LH, Liu JW, Chu C: Fluoroquinolone resistance in Salmonella enterica serotype Choleresuis, Taiwan, 2000-2003. Emerg Infect Dis 2004, 10:1674-1676.Google Scholar

  • 23. Bucheron S, Imberechts H, Chaslus-Dancla E, Cloeckaert A: The AcrB multidrug transporter plays a major role in high level fl uoroquinolone resistance in Salmonella enterica srovar Typhimurium phage type DT204. Microb Drug Resist 2002, 8: 281-289.Google Scholar

  • 24. Olliver A, Vallé M, Chaslus-Dancla E, Cloeckaert A.: Role of an acrR mutation in multidrug resistance of in vitro-selected fl uoroquinolone-resistant mutants of Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 2004, 238:267-272.Google Scholar

  • 25. Olliver A, Vallé M, Chaslus-Dancla E, Cloeckaert A: Overexpression of multidrug efflux operon acrEF by insertonal activation with IS1 or IS10 elements in Salmonella enetrica serovar Typhimurium DT204 acrB mutants selected with fluoroquinolones. Antimicrob Agents Ch 2005, 49:289-301.CrossrefGoogle Scholar

  • 26. Blair JM, Smith HE, Ricci V, Lawler AJ, Thompson LJ, Piddock LJV: Expression of homologous RND effl ux pump genes is dependent upon AcrB expression: implications for efflux and virulence inhibitor design. J Antimicrob Chemoth 2015, 70:424-431.Web of ScienceCrossrefGoogle Scholar

  • 27. Abouzeed YM, Baucheron S, Cloeckaert A: ramR mutations involved in efflux-mediated multidrug resistance in Salmonella enterica serovar Typhimurium. Antimicrob Agents Ch 2008, 52:2428-2434.CrossrefGoogle Scholar

  • 28. Zheng J, Cui S, Meng J: Effect of transcriptional activators RamA and SoxS on expression of multidrug efflux pumps AcrAB and AcrEF in fl uoroquinolone-resistant Salmonella Typhimurium. J Antimicrob Chemoth 2009, 63:95-102.Web of ScienceCrossrefGoogle Scholar

  • 29. Kehrenberg C, Cloeckaert A, Klein G, Schwarz S: Decreased fluoroquinolone susceptibility in mutants of Salmonella serovars other than Typhimurium: detection of novel mutations involved in modulated expression of ramA and SoxS. J Antimicrob Chemoth 2009, 64:1175-1180.CrossrefGoogle Scholar

  • 30. Martínez-Martínez L, Pascual A, Jacoby GA: Quinolone resistance from a transferable plasmid. Lancet 1998, 351:797-799.CrossrefGoogle Scholar

  • 31. Hata M, Suzuki M, Matsumoto M, Takahashi M, Sato K, Ibe S, Sakae K: Cloning of a novel gene for quinolone resistance from a transfarable plasmid in Shigella flexneri 2b. Antimicrob Agents Ch 2005, 49:801-803.CrossrefGoogle Scholar

  • 32. Jacoby GA, Walsh KE, Mills DM, Walker VJ, Oh H, Robicsek A, Hooper DC: qnrB, another plasmid-mediated gene for quinolone resistance. Antimicrob Agents Ch 2006, 50:1178-1182.CrossrefGoogle Scholar

  • 33. Wang M, Guo Q, Xu X, Wang X, Ye X, Wu S, Hooper DC, Wang M: New plasmidmediated quinolone resistance gene, qnrC, found in a clinical isolate of Proteus mirabilis. Antimicrob Agents Ch 2009, 53:1892-1897. CrossrefGoogle Scholar

  • 34. Cavaco LM, Hasman H, Xia S, Aarestrup FM: qnrD, a novel gene conferring transferable quinolone resistance in Salmonella enterica serovar Kentucky and Bovismorbifi cans strains of human origin. Antimicrob Agents Ch 2009, 53:603-608.CrossrefGoogle Scholar

  • 35. Strahilevitz J, Jacoby GA, Hooper DC, Robicsek A: Plasmid-mediated quinolone resistance: a multifaceted threat. Clin Microbiol Rev 2009, 22:664-689.CrossrefGoogle Scholar

  • 36. Velhner M, Kozoderović G, Jelesić Z, Stojanov I, Dubravka P, Jelena Petrović: Plasmid mediated resistance to quinolones in Salmonella. Arhiv Vet Med 2012, 5: 19-29.Google Scholar

  • 37. Wang M, Tran JH, Jacoby GA, Zhang Y, Wang F, Hooper DC: Plasmid mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob Agents Ch 2003, 47:2242-2248.CrossrefGoogle Scholar

  • 38. Robicsek A, Strahilevitz J., Jacoby GA, Macielag M, Abbanat D, Park CH, Bush K, Hooper DC: Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 2006, 12:83-88.CrossrefGoogle Scholar

  • 39. Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC: Prevalence in the United States of aac(6’)-Ib-cr encoding a ciprofloxacin-modifying enzyme: Antimicorb Agents Ch 2006, 50:3953-3955.Google Scholar

  • 40. Yamane K, Wachino J, Suzuki S, Arakawa Y: Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob Agents Ch 2008, 52:1564-1566.CrossrefGoogle Scholar

  • 41. Hansen LH, Sørensen SJ, Jørgensen HS, Jensen LB: The prevalence of the OqxAB multidrug efflux pump amongst olaquindox-resistant Escherichia coli in pigs. Microb Drug Resist 2005, 11:378-382.CrossrefGoogle Scholar

  • 42. Wong MH, Chan EW, Liu LZ, Chen S: PMQR genes oqxAB and acc(6’)Ib-cr accelerate the development of fluoroquinolone resistance in Salmonella typhimurium. Front Microbiol 2014, 5, article 521.Web of ScienceGoogle Scholar

  • 43. Kehrenberg C, Friederichs S, de Jong A, Michael GB, Schwarz S: Identification of the plasmid-borne quinolone resistance gene qnrS in Salmonella enterica serovar Infantis. J of Antimicrob Chemoth 2006, 58:18-22.Google Scholar

  • 44. Arnaut M, Velhner M, Suvajdžić Lj, Milanov D, Petrović J, Kozoderović G: The role of effl ux pump and other mechanisms of antimicrobial resistance to (fl uoro)quinolones in epidemic isolates of Salmonella Typhimurum, Salmonella Kentucky and Salmonella Infantis. Archives Vet Med 2014, 7:71-80.Google Scholar

  • 45. Velhner M, Todorović D, Pajić M, Stojanov I: Antimicrobial resistance of Salmonella spp. isolated from poultry farms in southern Bačka and Srem region, XVI International Symposium “Feed Technology”, Institute of Food Technology, University of Novi Sad, Novi Sad, 28-30, 10, 2014, p 172-175.Google Scholar

  • 46. Todorović D, Velhner M, Milanov D, Vidanović D, Suvajdžić Lj, Stojanov I, Krnjaić D: Characterization of tetracycline resistance of Salmonella enterica subspecies enterica serovar Infantis isolated from poultry in the northern part of Serbia. Acta Vet Beograd 2015, 65:548-556.Web of ScienceCrossrefGoogle Scholar

  • 47. Velhner M, Kozoderović G, Jelesić Z: Antibiotic resistance to fluoroqionoles in Salmonella spp.: Recent findings in Serbia and brief overview of resistance mechanisms and molecular typing methods, Proceedings “One Health-New Challenges” First International Symposium of Veterinary Medicine, Hotel “Premier Aqua”, Vrdnik, May 21-23, 2015, 468-472. Google Scholar

About the article

Received: 2016-02-08

Accepted: 2016-05-06

Published Online: 2016-06-28

Published in Print: 2016-06-01


Citation Information: Acta Veterinaria, Volume 66, Issue 2, Pages 147–159, ISSN (Online) 1820-7448, DOI: https://doi.org/10.1515/acve-2016-0013.

Export Citation

© by Maja Velhner. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. BY-NC-ND 4.0

Comments (0)

Please log in or register to comment.
Log in