Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Materials Science

The Journal of Gdansk University of Technology

4 Issues per year

Open Access
See all formats and pricing
More options …

Clay Minerals – Mineralogy and Phenomenon of Clay Swelling in Oil & Gas Industry

B. Karpiński
  • Corresponding author
  • Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Szkodo
  • Gdansk University of Technology, Department of Materials Science and Welding Engineering, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-10 | DOI: https://doi.org/10.1515/adms-2015-0006


Among the minerals found in the earth's crust, clay minerals are of the widest interest. Due to the specific properties such as plasticity, absorbing and catalytic properties clay minerals are used in many industries (oil & gas, chemistry, pharmacy, refractory technology, ceramics etc.). In drilling, a phenomenon of swelling clays is frequently observed. It has an important impact on the cementing quality. During the last few decades clays have been the subject of research on a scale unprecedented in the history of mineralogy. This paper presents review literature on mineralogy of clay minerals and phenomenon of swelling in oil and gas industry. Unique ion exchange properties and clay swelling mechanisms are also considered.

Keywords : clay minerals; oil&gas; ion exchanging; swelling


  • 1. Zvyagin B.B.: Materialy k klassifikatsii glinistykh mineralov (Data on the Classification of Clay Minerals), Izd. Akad. Nauk SSSR, Moscow, 1961.Google Scholar

  • 2. Stoch L.: Minerały Ilaste, Wydawnictwo geologiczne, Warszawa, 1974, 12-17.Google Scholar

  • 3. Henry C. H. Darley, George Robert Gray.: Composition and Properties of Drilling and Completion Fluids, Gulf Professional Publishing; 6 edition August 29, 2011.Google Scholar

  • 4. Krzysiek J, UK Patent: GB 2446742A; 2012.Google Scholar

  • 5. Civan, F., “Effect of Completion Damage on Well Performance,” Workshop 18: Contemporary Oil and Gas Well Completion and Work over Jobs, Petroleum Engineering Summer School, The Inter- University Center, Dubrovnik, Croatia, June 13-17, 2005.Google Scholar

  • 6. Fink, J. K.: Petroleum Engineers Guide to Oil Field Chemicals and Fluids, Gulf Professional Publishing, May 2012 .Google Scholar

  • 7. Durand, C., Onaisi, A., Audibert, A., Forsans, T., Ruffet, C.: Infuence of clays on bore-hole stability: A literature survey: Pt.1: Occurrence of drilling problems physico-chemicaldescription of clays and of their interaction with fuids. Rev. Inst. Franc. Pet. 50 (2), 1995, 187-218.Google Scholar

  • 8. Zhou,Z.J.,Gunter,W.D.,Jonasson,R.G.: Controlling formation damage using clay stabilizers: A review. In: Proceedings Volume-2, no. CIM 95-71, 46th Annu. Cim. Petrol. Soc. Tech. Mtg.(Banff, Can, 5/14-17/95), 1995.Google Scholar

  • 9. Van Oort, E.: Physico-chemical stabilization of shales, in: Proceedings Volume, SPE Oilfeld Chem. Int. Symp. (Houston, 2/18-21/97), 1997, 523-538.Google Scholar

  • 10. Patel, A.D., Stamatakis, E., Davis, E.: Shale hydration inhibition agent and method of use, US Patent 6 247 543, assigned to M I Llc., June 19 2001.Google Scholar

  • 11. Ohen, H.A. and Civan, F.: Simulation of Formation Damage in Petroleum Reservoirs, SPE Advanced Technology Series 1, 1993.Google Scholar

  • 12. Amaefule, J. O., Kersey, D. G., Norman, D. L., and Shannon, P. M.: Advancesin Formation Damage Assessment and Control Strategies, CIM Paper No.88-39-65, Proceedings of the 39th Annual Technical Meeting of PetroleumSociety of CIM and Canadian Gas Processors Association, Calgary, Alberta, June 12-16, 1988.Google Scholar

  • 13. Civan, Faruk; Mechanism of Clay Swelling from Reservoir Formation Damage - Fundamentals, Modeling, Assessment, and Mitigation; Elsevier; 2000.Google Scholar

  • 14. K. Krishna Moha, Ravimadhav N. Vaidyab, Marion G. Reed and H. Scott Fogle,: Colloids and Surfaces A: Physicochemical and Engineering Aspects. Elsevier Science Publishers B.V., Amsterdam; 18 February 1993, 73 (1993) 231-254.Google Scholar

  • 15. Gangopadhyay S.: Engineering Geology; Oxford University Press India, 2013Google Scholar

  • 16. Wentworth C. K., A scale of grade and class terms of clastic sediments. J. Geol. 30, 377 - 392, 1922.CrossrefGoogle Scholar

  • 17. Ruhin L. B.: Osnovy Litologii, YoYo Media 1961.Google Scholar

  • 18. Pettijohn F. J., Sedimentary rocks. Harper, New York 1957.Google Scholar

  • 19. Harrison, R.M., Understanding Our Environment - An Introduction to Environmental Chemistry and Pollution (3rd Edition), Royal Society of Chemistry, 1999.Google Scholar

  • 20. Grim, R.E., Clay Mineralogy, McGraw Hill Book Co., New York 1953.Google Scholar

  • 21. Grim, R.E., Applied Clay Mineralogy, McGraw Hill, New York 1962.Google Scholar

  • 22. Marshall, C.E., The Colloid Chemistry of Silicate Minerals, Academic Press, New York 1949.Google Scholar

  • 23. Weaver, C.E., Pollard, L.D., The Chemistry of Clay Minerals, Elsevier Scientific Publ. Co., New York 1973.Google Scholar

  • 24. Serra, O.: Well Logging and Reservoir Evaluation, Editions Technip ,Volume 3, Paris, France, 2007.Google Scholar

  • 25. Grim, R.E,: Clay Mineralogy, International Series in the Earth and Planetary Sciences. F. Press, ed. New York: McGraw-Hill Book Company, 1968Google Scholar

  • 26. Hendricks, S.B., Jefferson, M.E., 1938. Structure of kaolin and talc - pyrophyllite hydrate sand their bearing on water sorption of the clays. Am. Mineral. 23,863-875.Google Scholar

  • 27. MC Murchy R.C.: Structure of chlorites. Proc Leeds Phil. Lit. Soc. Sect. 5, 1934, 102-108.Google Scholar

  • 28. Hughes, R. V.: The Application of Modern Clay Concepts to Oil Field Development, in Drilling and Production Practice 1950, American Petroleum Institute, New York, NY, 1951, 151-167Google Scholar

  • 29. Grim, R. E.: Modern Concepts of Clay Minerals, Jour. Geology, Vol. 50, No. 3, April-May 1942, 225-275. CrossrefGoogle Scholar

  • 30. Degens, E. T.: Geochemistry of Sediments, Prentice-Hall, Englewood Cliffs, N.J., 1965.Google Scholar

  • 31. Ezzat, A. M., “Completion Fluids Design Criteria and Current Technology Weak-nesses,” SPE 19434 paper, the SPE Formation Damage Control Symposium held in Lafayette, Louisiana, February 22-23, 1990, 255-266Google Scholar

  • 32. Mancini, E. A., “Characterization of Sandstone Heterogeneity in CarboniferousReservoirs for Increased Recovery of Oil and Gas from Foreland Basins,”Contract No. FG07-90BC14448, in EORDOE/ BC-90/4 Progress Review,64, 79-83, U.S. Department of Energy, Bartlesville, Oklahoma, May 1991,129pp.Google Scholar

  • 33. Stadler P.J.: Influence of crystallographic habit and aggregate structure of authigenic clay minerals on sandstone permeability, Geologic Mijnbouw 53, 1973, 217-220.Google Scholar

  • 34. Sommer F. (1975). Histoire diagtn&ique d'une strie grtseuse de Mer du Nord. Datation de l'introduction des hydrocarbures. Revue lnst. fr. Pdtrole 30, 729-740.Google Scholar

  • 35. Hancock N.J. & Taylor A.M.: Clay mineral diagenesis and oil migration in the Middle Jurassic Brent Sand Formation, J. Geol. Soc. Lond. 135, 1978, 69-72.CrossrefGoogle Scholar

  • 36. Goven N., Howe W.F. & Davms D.K.: Nature of authigenic illites in sandstone reservoirs, J. Sedim.Petrol. 50, 1980, p. 761-766.Google Scholar

  • 37. Tovey, N.K.: A selection of scanning electron micrographs of clays, University of Cambridge, Department of Engineering, 1971.Google Scholar

  • 38. Patel, A.D., Stamatakis, E., Davis, E., Friedheim, J.: High performance water based drillingfuids and method of use, US Patent 7 250 390, assigned to M-I L.L.C. (Houston, TX), 31 July 2007.Google Scholar

  • 39. Blachier, C., Michot, L., Bihannic, I., Barr`es, O., Jacquet, A., Mosquet, M.: Adsorption ofpolyamine on clay minerals. J. Colloid Interface Sci. 336 (2), 2009, 599-606.Google Scholar

  • 40. Mehlich, A., 1948, Determination of cation- and anion-exchange properties of soils, Soil Sci. 66, 429-445.Google Scholar

  • 41. Alexiades C., Jackson M. L.: Quantitative determination of vermiculite in soils, Soil Sci. Soc. Amer. Proc. 29, 1965, 522-27CrossrefGoogle Scholar

  • 42. Kloppenburg, S., 1997, Kolloidchemische Steuerung der Porosität aggregierter Tonminerale, Dissertation, Universität Kiel.Google Scholar

  • 43. Eslinger, E., Pevear, D, 1988. Clay Minerals for Petroleum Geologists and Engineers. SEPM Short Course Notes No. 22, Society of Economic Paleontologists and Mineralogists, Tulsa 1988.Google Scholar

  • 44. Zhou, Z., “Construction and Application of Clay-Swelling Diagrams by Use of XRD Methods,” JPT, April 1995, 306.Google Scholar

  • 45. Mohan, K. K., and Fogler, H. S., “Colloidally Induced Smecticic Fines Migration: Existance of Microquakes,” AIChE Journal, 43(3), March 1997, 565-576.CrossrefGoogle Scholar

  • 46. Norrish, K.,1954.Theswellingofmontmorillonite.Discuss.FaradaySoc.18, 120-134.CrossrefGoogle Scholar

  • 47. Collins, E. R.: Flow of Fluids Through Porous Materials, Penn Well Publishing Co., Tulsa, Oklahoma, 1961.Google Scholar

  • 48. Nayak, N. V., Christensen, R. W., Swelling Characteristics of Compacted Expansive Soils, Vol. 19, No. 4, December 1970, 251-261.Google Scholar

  • 49. Chang, F. F. and Civan, F.: Practical Model for Chemically Induced Formation Damage, Journal of Petroleum Science and Engineering, 17(1/2), February 1997, 123-137. Google Scholar

  • 50. Seed, H. B., Woodward, Jr, R. J., and Lundgren, R., “Prediction of Swelling Potential for Compacted Clays,” Journal of Soil Mechanics and Foundation Engineering Division, Proceedings of the American Society of Civil Engineers, 88(SM3), June 1962b, 53-87.Google Scholar

  • 51. Manohar Lal,; Shale Stability: Drilling Fluid Interaction and Shale Strength, Society of Petroleum Engineers Inc, BP Amoco, 1999Google Scholar

  • 52. Beihoffer, T.W., Dorrough, D.S., Schmidt, D.D.: The separation of electrolyte from rheological effects in studies of inhibition of shales with native moisture contents, SPE Paper 18032. IADC/SPE Drilling Conference, Houston, 1988, 2-5 October.Google Scholar

  • 53. Bol, G.M., Wong, S.W., Davidson, C.J., Woodland, D.C.: Borehole stability in shales. Paper SPE24975. SPE European Petroleum Conference, Cannes, 1992, Nov. 16-18.Google Scholar

  • 54. van Oort, E., 2003. On the physical and chemical stability of shales. J. Petr. Sci. Eng. 38, 213-235.Google Scholar

  • 55. Jaber Taheri Shakib, Hossein Jalalifar and Ebrahim Akhgarian,; Wellbore Stability in Shale Formation Using Analytical and Numerical Simulation, Journal of Chemical and Petroleum Engineering, University of Tehran, Vol. 47, No.1, Jun.2013, 51-60Google Scholar

  • 56. Doleschall, S., Milley, G., Paal, T., 1987. Control of clays in fuid reservoirs. In: Proceedings Volume, 4th BASF AG et al Enhanced Oil Recovery Europe Symp. (Hamburg, Ger, 10/27-29/87), 803-812.Google Scholar

  • 57. Ballard, T., Beare, S., Lawless, T., 1993. Mechanisms of shale inhibition with water based muds. In:Proceedings Volume, IBC Tech. Serv. Ltd Prev. Oil Discharge from Drilling Oper. The OptionsConf. (Aberdeen, Scot, 6/23-24/93).Google Scholar

  • 58. Pinnavma T.J.: Intercalated clay catalysts. Science, 220, 1983, 365-371.Google Scholar

  • 59. Diddams P.A., Thomas J.T., Jones W., Baelantine J.A. & Purnell J.H.: Synthesis, characterization, and catalytic activity of beidellite-montmorillonite layered silicas and their pillared analogues, J. Chem. Soc., Chem. Commun. 20, 1984, 1340-1342.CrossrefGoogle Scholar

  • 60. Kitutchi E., Maxsuoa T., Ueda I. & Morita Y.: Conversion of trimethylbenzenes over montmorillonites pillared by aluminium and zirconium oxides. Appl. Cat. 16, 1985, 401-410.Google Scholar

  • 61. Zyla M. & Bandosz T.: Montmorillonite from Milowice intercalated with hydroxyl-aluminium oligocations as vapour and gas adsorbent, Min. Polon. 18, 1987, 39-50.Google Scholar

  • 62. Peter A., Ciullo R.T.: Industrial Minerals and their uses A Handbook & Formulary, Noyes Publication, United States, 1996.Google Scholar

  • 63. Brindley G.W., Sempels R.E.: Preparation and properties of some hydroxyl aluminium beidellites, Clay Miner. 12, 1977, 229-236. Google Scholar

About the article

Published Online: 2015-04-10

Published in Print: 2015-03-01

Citation Information: Advances in Materials Science, Volume 15, Issue 1, Pages 37–55, ISSN (Online) 2083-4799, DOI: https://doi.org/10.1515/adms-2015-0006.

Export Citation

© by B. Karpiński. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in