Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board Member: Bannai, Eiichi / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Pasini, Antonio / Ratcliffe, John G. / Scharlau, Rudolf / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

4 Issues per year


IMPACT FACTOR 2016: 0.552

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.564
Source Normalized Impact per Paper (SNIP) 2016: 1.021

Mathematical Citation Quotient (MCQ) 2016: 0.45

Online
ISSN
1615-7168
See all formats and pricing
More options …
Volume 9, Issue 4 (Jan 2009)

Issues

Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group

Christoph Müller
  • Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstraße 7, 64289 Darmstadt, Germany. Email:
/ Christoph Wockel
  • Fachbereich Mathematik, Technische Universität Darmstadt, Schlossgartenstraße 7, 64289 Darmstadt, Germany. Email:
Published Online: 2009-09-10 | DOI: https://doi.org/10.1515/ADVGEOM.2009.032

Abstract

Let K be a Lie group, modeled on a locally convex space, and M a finite-dimensional paracompact manifold with corners. We show that each continuous principal K-bundle over M is continuously equivalent to a smooth one and that two smooth principal K-bundles over M which are continuously equivalent are also smoothly equivalent. In the concluding section, we relate our results to neighboring topics.

Key words.: Infinite-dimensional Lie groups; manifolds with corners; continuous principal bundles; smooth principal bundles; equivalences of continuous and smooth principal bundles; smoothing of continuous principal bundles; smoothing of continuous bundle equivalences; non-abelian Čech cohomology; twisted K-theory

About the article

Published Online: 2009-09-10

Published in Print: 2009-10-01


Citation Information: Advances in Geometry, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/ADVGEOM.2009.032.

Export Citation

Comments (0)

Please log in or register to comment.
Log in