Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scharlau, Rudolf / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

4 Issues per year


IMPACT FACTOR 2017: 0.734

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.695
Source Normalized Impact per Paper (SNIP) 2017: 0.891

Mathematical Citation Quotient (MCQ) 2017: 0.62

Online
ISSN
1615-7168
See all formats and pricing
More options …
Volume 14, Issue 4

Issues

Bifurcation values and stability of algebras of bounded polynomials

Krzysztof Kurdyka
  • Laboratoire de Mathematiques (LAMA) Université de Savoie, UMR-5127 de CNRS, 73-376 Le Bourget-du-Lac cedex, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria Michalska / Stanisław Spodzieja
  • This research was partially supported by NCN (Poland), grant 2012/07/B/ST1/03293 and by ANR (France), grant STAAVF.
  • Faculty of Mathematics and Computer Science, University of Łód´z, S. Banacha 22, 90-238 Łód´z, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-10-08 | DOI: https://doi.org/10.1515/advgeom-2014-0006

Abstract

We show a tight relation between bifurcation values of a fixed polynomial f ∈ R[X; Y] and the family of polynomials bounded on a set { x ∈ R2 | f(x) ≤ c}. If g ∈ R[X; Y] is bounded on {x ∈ R2 | f(x) ≤ c}, then it is bounded on the bigger set {x ∈ R2 | f(x) ≤ c̃} with c < c̃ provided that the interval [c; c̃] does not contain any complex bifurcation value at infinity of f.

Keywords: Bounded polynomials; bifurcation values; generalised critical values.

About the article

Published Online: 2014-10-08

Published in Print: 2014-10-01


Citation Information: Advances in Geometry, Volume 14, Issue 4, Pages 631–646, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2014-0006.

Export Citation

© 2014 by Walter de Gruyter Berlin/Boston.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Toan Minh Ho, Trung Hoa Dinh, and Tiến Sơn Phạm
Acta Mathematica Vietnamica, 2018

Comments (0)

Please log in or register to comment.
Log in