Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scharlau, Rudolf / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

4 Issues per year


IMPACT FACTOR 2017: 0.734

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.695
Source Normalized Impact per Paper (SNIP) 2017: 0.891

Mathematical Citation Quotient (MCQ) 2017: 0.62

Online
ISSN
1615-7168
See all formats and pricing
More options …
Volume 16, Issue 2

Issues

The second largest Erdős–Ko–Rado sets of generators of the hyperbolic quadrics Q+(4n + 1, q)

Maarten De Boeck
  • Corresponding author
  • University of Gent, Department of Mathematics, Krijgslaan 281-S22, 9000 Gent, Flanders, Belgium
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-04-16 | DOI: https://doi.org/10.1515/advgeom-2015-0034

Abstract

AnErdős-Ko-Rado set of generators of a hyperbolic quadric is a set of generatorswhich are pairwise not disjoint. In this article we classify the second largest maximal Erdos-Ko-Rado set of generators of the hyperbolic quadrics Q+(4n + 1, q), q ≥ 3.

Keywords: Erdős-Ko-Rado theorem; hyperbolic quadric

About the article

Received: 2014-01-15

Revised: 2015-06-22

Published Online: 2016-04-16

Published in Print: 2016-04-01


Citation Information: Advances in Geometry, Volume 16, Issue 2, Pages 253–263, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2015-0034.

Export Citation

© 2016 by Walter de Gruyter Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in