[1]

A. Arvanitoyeorgos, F. Defever, G. Kaimakamis, V. J. Papantoniou, Biharmonic Lorentz hypersurfaces in $\begin{array}{}{E}_{1}^{4}\end{array}$. *Pacific J*. Math. **229** (2007), 293–305. MR2276512 Zbl 1153.53011CrossrefGoogle Scholar

[2]

A. Balmuş, S. Montaldo, C. Oniciuc, Classification results for biharmonic submanifolds in spheres. *Israel J*. *Math*. **168** (2008), 201–220. MR2448058 Zbl 1172.58004Web of ScienceCrossrefGoogle Scholar

[3]

A. Balmuş, S. Montaldo, C. Oniciuc, Biharmonic hypersurfaces in 4-dimensional space forms. *Math*. *Nachr*. **283** (2010), 1696–1705. MR2560665 Zbl 1210.58013CrossrefWeb of ScienceGoogle Scholar

[4]

R. Caddeo, S. Montaldo, C. Oniciuc, Biharmonic submanifolds of *S*^{3}. *Internat*. *J*. *Math*. **12** (2001), 867–876. MR1863283 Zbl 1111.53302CrossrefGoogle Scholar

[5]

R. Caddeo, S. Montaldo, C. Oniciuc, Biharmonic submanifolds in spheres. *Israel J*. *Math*. **130** (2002), 109–123. MR1919374 Zbl 1038.58011CrossrefGoogle Scholar

[6]

E. Cartan, Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques. *Math*. *Z*. **45** (1939), 335–367. MR0000169 Zbl 65.0792.01CrossrefGoogle Scholar

[7]

B.-Y. Chen, Some open problems and conjectures on submanifolds of finite type. *Soochow J*. *Math*. **17** (1991), 169–188. MR1143504 Zbl 0749.53037Google Scholar

[8]

B.-Y. Chen, Classification of marginally trapped Lorentzian flat surfaces in $\begin{array}{}{\mathbb{E}}_{2}^{4}\end{array}$ and its application to biharmonic surfaces. *J*. *Math*. *Anal*. *Appl*. **340** (2008), 861–875. MR2390893 Zbl 1160.53007CrossrefGoogle Scholar

[9]

B.-Y. Chen, *Total mean curvature and submanifolds of finite type*, volume 27 of *Series in Pure Mathematics*. World Scientific Publishing Co., Hackensack, NJ 2015. MR3362186 Zbl 1326.53004Google Scholar

[10]

B.-Y. Chen, S. Ishikawa, Biharmonic surfaces in pseudo-Euclidean spaces. *Mem*. *Fac*. *Sci*. *Kyushu Univ*. *Ser*. *A* **45** (1991), 323–347. MR1133117 Zbl 0757.53009Google Scholar

[11]

B.-Y. Chen, S. Ishikawa, Biharmonic pseudo-Riemannian submanifolds in pseudo-Euclidean spaces. *Kyushu J. Math*. **52** (1998), 167–185. MR1609044 Zbl 0892.53012CrossrefGoogle Scholar

[12]

B.-Y. Chen, M. I. Munteanu, Biharmonic ideal hypersurfaces in Euclidean spaces. *Differential Geom. Appl*. **31** (2013), 1–16. MR3010073 Zbl 1260.53017CrossrefWeb of ScienceGoogle Scholar

[13]

F. Defever, G. Kaimakamis, V. Papantoniou, Biharmonic hypersurfaces of the 4-dimensional semi-Euclidean space ${\mathbb{E}}_{s}^{4}$. *J*. *Math*. *Anal*. *Appl*. **315** (2006), 276–286. MR2196546 Zbl 1091.53038CrossrefGoogle Scholar

[14]

I. M. Dimitric, *Quadric representation and submanifolds of finite type*. PhD thesis, Michigan State University, 1989.Google Scholar

[15]

I. Dimitrić, Submanifolds of *E*^{m} with harmonic mean curvature vector. *Bull*. *Inst*. *Math*. *Acad*. *Sinica* **20** (1992), 53–65. MR1166218 Zbl 0778.53046Google Scholar

[16]

J. Eells, Jr., J. H. Sampson, Harmonic mappings of Riemannian manifolds. *Amer*. *J*. *Math*. **86** (1964), 109–160. MR0164306 Zbl 0122.40102CrossrefGoogle Scholar

[17]

Y. Fu, Biharmonic hypersurfaces with three distinct principal curvatures in Euclidean 5-space. *J*. *Geom*. *Phys*. **75** (2014), 113–119. MR3126938 Zbl 1283.53005Web of ScienceCrossrefGoogle Scholar

[18]

Y. Fu, Biharmonic hypersurfaces with three distinct principal curvatures in spheres. *Math. Nachr*. **288** (2015), 763–774. MR3345102 Zbl 1321.53065Web of ScienceCrossrefGoogle Scholar

[19]

R. S. Gupta, On bi-harmonic hypersurfaces in Euclidean space of arbitrary dimension. *Glasg. Math. J*. **57** (2015), 633–642. MR3395337 Zbl 1323.53065Web of ScienceCrossrefGoogle Scholar

[20]

T. Hasanis, T. Vlachos, Hypersurfaces in *E*^{4} with harmonic mean curvature vector field. *Math*. *Nachr*. **172** (1995), 145–169. MR1330627 Zbl 0839.53007CrossrefGoogle Scholar

[21]

T. Ichiyama, J.-i. Inoguchi, H. Urakawa, Classifications and isolation phenomena of bi-harmonic maps and bi-Yang-Mills fields. *Note Mat*. **30** (2010), 15–48. MR2943022 Zbl 1244.58006Google Scholar

[22]

C. Oniciuc, Biharmonic maps between Riemannian manifolds. *An*. *Ştiinţ*. *Univ*. *Al*. *I*. *Cuza laşi*. *Mat*. (*N*.*S*.) **48** (2002), 237–248 (2003). MR2004799 Zbl 1061.58015Google Scholar

[23]

P. J. Ryan, Homogeneity and some curvature conditions for hypersurfaces. *Tôhoku Math. J*. (2) **21** (1969), 363–388. MR0253243 Zbl 0185.49904CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.