Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scharlau, Rudolf / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

4 Issues per year

IMPACT FACTOR 2017: 0.734

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.695
Source Normalized Impact per Paper (SNIP) 2017: 0.891

Mathematical Citation Quotient (MCQ) 2017: 0.62

See all formats and pricing
More options …
Ahead of print


Higher order Dehn functions for horospheres in products of Hadamard spaces

Gabriele Link
  • Corresponding author
  • Institut für Algebra und Geometrie, Karlsruher Institut für Technologie (KIT), Englerstr. 2, Gebäude 20.30, 76131 Karlsruhe, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-07 | DOI: https://doi.org/10.1515/advgeom-2017-0042


Let X be a product of r locally compact and geodesically complete Hadamard spaces. We prove that the horospheres in X centered at regular boundary points of X are Lipschitz-(r − 2)-connected. If X has finite Assouad–Nagata dimension, then using the filling construction by R. Young in [10] this gives sharp bounds on higher order Dehn functions for such horospheres. Moreover, if Γ ⊂ Is(X) is a lattice acting cocompactly on X minus a union of disjoint horoballs, then we get a sharp bound on higher order Dehn functions for Γ. We deduce that apart from the Hilbert modular groups already considered by R. Young, every irreducible ℚ-rank one lattice acting on a product of r Riemannian symmetric spaces of the noncompact type is undistorted up to dimension r−1 and has k-th order Dehn function asymptotic to V(k+1)/k for all kr − 2.

Keywords: Hadamard space; horosphere; Dehn function

MSC 2010: 20F69


  • [1]

    W. Ballmann, Lectures on spaces of nonpositive curvature, volume 25 of DMV Seminar. Birkhäuser 1995. MR1377265 Zbl 0834.53003Google Scholar

  • [2]

    W. Ballmann, M. Gromov, V. Schroeder, Manifolds of nonpositive curvature. Birkhäuser 1985. MR823981 Zbl 0591.53001Google Scholar

  • [3]

    M. R. Bridson, A. Haefliger, Metric spaces of non-positive curvature. Springer 1999. MR1744486 Zbl 0988.53001Google Scholar

  • [4]

    P.-E. Caprace, M. Sageev, Rank rigidity for CAT(0) cube complexes. Geom. Funct. Anal. 21 (2011), 851–891. MR2827012 Zbl 1266.20054CrossrefGoogle Scholar

  • [5]

    C. Druţu, Filling in solvable groups and in lattices in semisimple groups. Topology 43 (2004), 983–1033. MR2079992 Zbl 1083.20033CrossrefGoogle Scholar

  • [6]

    U. Lang, T. Schlichenmaier, Nagata dimension, quasisymmetric embeddings, and Lipschitz extensions. Int. Math. Res. Not. no. 58 (2005), 3625–3655. MR2200122 Zbl 1095.53033Google Scholar

  • [7]

    G. Link, Generalized conformal densities for higher products of rank one Hadamard spaces. Geom. Dedicata 178 (2015), 351–387. MR3397499 Zbl 1334.20039CrossrefGoogle Scholar

  • [8]

    G. Prasad, Strong rigidity of ℚ-rank 1 lattices. Invent. Math. 21 (1973), 255–286. MR0385005 Zbl 0264.22009CrossrefGoogle Scholar

  • [9]

    M. S. Raghunathan, Discrete subgroups of Lie groups. Springer 1972. MR0507234 Zbl 0254.22005Google Scholar

  • [10]

    R. Young, Lipschitz connectivity and filling invariants in solvable groups and buildings. Geom. Topol. 18 (2014), 2375–2417. MR3268779 Zbl 1347.20046Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2016-08-02

Published Online: 2018-01-07

Citation Information: Advances in Geometry, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2017-0042.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in