[1]

A. Caminha, The geometry of closed conformal vector fields on Riemannian spaces. *Bull. Braz. Math. Soc*. (N.S.) **42** (2011), 277–300. MR2833803 Zbl 1242.53068Web of ScienceCrossrefGoogle Scholar

[2]

A. Caminha, P. Souza, F. Camargo, Complete foliations of space forms by hypersurfaces. *Bull. Braz. Math. Soc*. (*N.S*.) **41** (2010), 339–353. MR2718145 Zbl 1226.53055CrossrefGoogle Scholar

[3]

M. Falcitelli, S. Ianus, A. M. Pastore, *Riemannian submersions and related topics*. World Scientific, River Edge, NJ 2004. MR2110043 Zbl 1067.53016Google Scholar

[4]

M. Fernández-López, E. Garcí a Rí o, D. Kupeli, B. Ünal, A curvature condition for a twisted product to be a warped product. *Manuscripta Math*. **106** (2001), 213–217. MR1865565 Zbl 0999.53029CrossrefGoogle Scholar

[5]

A. Gebarowski, On conformally flat doubly warped products. *Soochow J. Math*. **21** (1995), 125–129. MR1319557 Zbl 0824.53029Google Scholar

[6]

A. A. Grigor’yan, Stochastically complete manifolds and summable harmonic functions. *Izv. Akad. Nauk SSSR Ser. Mat*. **52** (1988), 1102–1108, 1120. MR972099 Zbl 0677.60086Google Scholar

[7]

M. Gutiérrez, B. Olea, Semi-Riemannian manifolds with a doubly warped structure. *Rev. Mat. Iberoam*. **28** (2012), 1–24. MR2904128 Zbl 1235.53073Web of ScienceGoogle Scholar

[8]

S. Kobayashi, K. Nomizu, *Foundations of differential geometry*. *Vol I*. Interscience Publ. 1963. MR0152974 Zbl 0119.37502Google Scholar

[9]

M. Lużyńczyk, P. Walczak, New integral formulae for two complementary orthogonal distributions on Riemannian manifolds. *Ann. Global Anal. Geom*. **48** (2015), 195–209. MR3376880 Zbl 1323.53027CrossrefWeb of ScienceGoogle Scholar

[10]

A. M. Naveira, A. H. Rocamora, A geometrical obstruction to the existence of two totally umbilical complementary foliations in compact manifolds. In: *Differential geometric methods in mathematical physics* (*Clausthal*, 1983), volume 1139 of *Lecture Notes in Math*., 263–279, Springer 1985. MR820481 Zbl 0571.53024Google Scholar

[11]

B. Olea, Doubly warped structures on semi-Riemannian manifolds. PhD thesis, Universidad de Málaga, Málaga (2009).Google Scholar

[12]

A. Olteanu, A general inequality for doubly warped product submanifolds. *Math. J. Okayama Univ*. **52** (2010), 133–142. MR2589853 Zbl 1188.53058Google Scholar

[13]

S. Pigola, M. Rigoli, A. G. Setti, *Vanishing and finiteness results in geometric analysis*. Birkhäuser 2008. MR2401291 Zbl 1150.53001Google Scholar

[14]

R. Ponge, H. Reckziegel, Twisted products in pseudo-Riemannian geometry. *Geom. Dedicata* **48** (1993), 15–25. MR1245571 Zbl 0792.53026CrossrefGoogle Scholar

[15]

B. L. Reinhart, *Differential geometry of foliations*. Springer 1983. MR705126 Zbl 0506.53018Google Scholar

[16]

A. H. Rocamora, Some geometric consequences of the Weitzenböck formula on Riemannian almost-product manifolds; weak-harmonic distributions. *Illinois J. Math*. **32** (1988), 654–671. MR955383 Zbl 0631.53026Google Scholar

[17]

V. Rovenski, L. Zelenko, Prescribing the mixed scalar curvature of a foliation. In: *Geometry and its applications*, volume 72 of *Springer Proc. Math. Stat*., 83–123, Springer 2014. MR3213509 Zbl 1331.53044Google Scholar

[18]

V. Y. Rovenskii, *Foliations on Riemannian manifolds and submanifolds*. Birkhäuser 1998. MR1486826 Zbl 0958.53021Google Scholar

[19]

S. E. Stepanov, A class of Riemannian almost-product structures. *Izv. Vyssh. Uchebn. Zaved. Mat*. no. **7** (1989), 40–46. MR1019217 Zbl 0684.53031Google Scholar

[20]

S. E. Stepanov, The Bochner technique in the theory of Riemannian almost product structures. *Mat. Zametki* **48** (1990), 93–98, 160. MR1076938 Zbl 0717.53023Google Scholar

[21]

S. E. Stepanov, An integral formula for a Riemannian almost-product manifold. *Tensor* (*N*.*S*.) **55** (1994), 209–214. MR1338577 Zbl 0831.53023Google Scholar

[22]

B. Ünal, Doubly warped products. *Differential Geom. Appl*. **15** (2001), 253–263. MR1868561 Zbl 1035.53100CrossrefGoogle Scholar

[23]

S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. *Indiana Univ. Math. J*. **25** (1976), 659–670. MR0417452 Zbl 0335.53041CrossrefGoogle Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.