Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scharlau, Rudolf / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

4 Issues per year


IMPACT FACTOR 2017: 0.734

CiteScore 2017: 0.70

SCImago Journal Rank (SJR) 2017: 0.695
Source Normalized Impact per Paper (SNIP) 2017: 0.891

Mathematical Citation Quotient (MCQ) 2017: 0.62

Online
ISSN
1615-7168
See all formats and pricing
More options …
Ahead of print

Issues

A remark on the mixed scalar curvature of a manifold with two orthogonal totally umbilical distributions

Sergey Stepanov
  • Corresponding author
  • Department of Mathematics, Finance University, Leningradsky Prospect, 49-55, 125468, Moscow, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Irina Tsyganok
  • Department of Mathematics, Finance University, Leningradsky Prospect, 49-55, 125468, Moscow, Russia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-07-20 | DOI: https://doi.org/10.1515/advgeom-2017-0043

Abstract

We prove a Liouville-type theorem for two orthogonal complementary totally umbilical distributions on a complete Riemannian manifold with non-positive mixed scalar curvature. This is applied to some special types of complete doubly twisted and warped products of Riemannian manifolds.

Keywords: Complete Riemannian manifold; two complementary orthogonal distributions

MSC 2010: 53C20

References

  • [1]

    A. Caminha, The geometry of closed conformal vector fields on Riemannian spaces. Bull. Braz. Math. Soc. (N.S.) 42 (2011), 277–300. MR2833803 Zbl 1242.53068Web of ScienceCrossrefGoogle Scholar

  • [2]

    A. Caminha, P. Souza, F. Camargo, Complete foliations of space forms by hypersurfaces. Bull. Braz. Math. Soc. (N.S.) 41 (2010), 339–353. MR2718145 Zbl 1226.53055CrossrefGoogle Scholar

  • [3]

    M. Falcitelli, S. Ianus, A. M. Pastore, Riemannian submersions and related topics. World Scientific, River Edge, NJ 2004. MR2110043 Zbl 1067.53016Google Scholar

  • [4]

    M. Fernández-López, E. Garcí a Rí o, D. Kupeli, B. Ünal, A curvature condition for a twisted product to be a warped product. Manuscripta Math. 106 (2001), 213–217. MR1865565 Zbl 0999.53029CrossrefGoogle Scholar

  • [5]

    A. Gebarowski, On conformally flat doubly warped products. Soochow J. Math. 21 (1995), 125–129. MR1319557 Zbl 0824.53029Google Scholar

  • [6]

    A. A. Grigor’yan, Stochastically complete manifolds and summable harmonic functions. Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), 1102–1108, 1120. MR972099 Zbl 0677.60086Google Scholar

  • [7]

    M. Gutiérrez, B. Olea, Semi-Riemannian manifolds with a doubly warped structure. Rev. Mat. Iberoam. 28 (2012), 1–24. MR2904128 Zbl 1235.53073Web of ScienceGoogle Scholar

  • [8]

    S. Kobayashi, K. Nomizu, Foundations of differential geometry. Vol I. Interscience Publ. 1963. MR0152974 Zbl 0119.37502Google Scholar

  • [9]

    M. Lużyńczyk, P. Walczak, New integral formulae for two complementary orthogonal distributions on Riemannian manifolds. Ann. Global Anal. Geom. 48 (2015), 195–209. MR3376880 Zbl 1323.53027CrossrefWeb of ScienceGoogle Scholar

  • [10]

    A. M. Naveira, A. H. Rocamora, A geometrical obstruction to the existence of two totally umbilical complementary foliations in compact manifolds. In: Differential geometric methods in mathematical physics (Clausthal, 1983), volume 1139 of Lecture Notes in Math., 263–279, Springer 1985. MR820481 Zbl 0571.53024Google Scholar

  • [11]

    B. Olea, Doubly warped structures on semi-Riemannian manifolds. PhD thesis, Universidad de Málaga, Málaga (2009).Google Scholar

  • [12]

    A. Olteanu, A general inequality for doubly warped product submanifolds. Math. J. Okayama Univ. 52 (2010), 133–142. MR2589853 Zbl 1188.53058Google Scholar

  • [13]

    S. Pigola, M. Rigoli, A. G. Setti, Vanishing and finiteness results in geometric analysis. Birkhäuser 2008. MR2401291 Zbl 1150.53001Google Scholar

  • [14]

    R. Ponge, H. Reckziegel, Twisted products in pseudo-Riemannian geometry. Geom. Dedicata 48 (1993), 15–25. MR1245571 Zbl 0792.53026CrossrefGoogle Scholar

  • [15]

    B. L. Reinhart, Differential geometry of foliations. Springer 1983. MR705126 Zbl 0506.53018Google Scholar

  • [16]

    A. H. Rocamora, Some geometric consequences of the Weitzenböck formula on Riemannian almost-product manifolds; weak-harmonic distributions. Illinois J. Math. 32 (1988), 654–671. MR955383 Zbl 0631.53026Google Scholar

  • [17]

    V. Rovenski, L. Zelenko, Prescribing the mixed scalar curvature of a foliation. In: Geometry and its applications, volume 72 of Springer Proc. Math. Stat., 83–123, Springer 2014. MR3213509 Zbl 1331.53044Google Scholar

  • [18]

    V. Y. Rovenskii, Foliations on Riemannian manifolds and submanifolds. Birkhäuser 1998. MR1486826 Zbl 0958.53021Google Scholar

  • [19]

    S. E. Stepanov, A class of Riemannian almost-product structures. Izv. Vyssh. Uchebn. Zaved. Mat. no. 7 (1989), 40–46. MR1019217 Zbl 0684.53031Google Scholar

  • [20]

    S. E. Stepanov, The Bochner technique in the theory of Riemannian almost product structures. Mat. Zametki 48 (1990), 93–98, 160. MR1076938 Zbl 0717.53023Google Scholar

  • [21]

    S. E. Stepanov, An integral formula for a Riemannian almost-product manifold. Tensor (N.S.) 55 (1994), 209–214. MR1338577 Zbl 0831.53023Google Scholar

  • [22]

    B. Ünal, Doubly warped products. Differential Geom. Appl. 15 (2001), 253–263. MR1868561 Zbl 1035.53100CrossrefGoogle Scholar

  • [23]

    S. T. Yau, Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25 (1976), 659–670. MR0417452 Zbl 0335.53041CrossrefGoogle Scholar

About the article


Received: 2017-02-03

Revised: 2017-03-20

Revised: 2017-04-11

Published Online: 2018-07-20


Funding: Our work was supported by RBRF grant 16-01-00053-a (Russia).


Citation Information: Advances in Geometry, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2017-0043.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in