[1]

M. C. Beltrametti, A. J. Sommese, *The adjunction theory of complex projective varieties*, volume 16 of *de Gruyter Expositions in Mathematics*. De Gruyter 1995. MR1318687 Zbl 0845.14003Google Scholar

[2]

F. Bogomolov, C. Böhning, On uniformly rational varieties. In: *Topology, geometry, integrable systems, and mathematical physics*, volume 234 of *Amer. Math. Soc. Transl. Ser*. 2, 33–48, Amer. Math. Soc. 2014. MR3307142 Zbl 1360.14043Google Scholar

[3]

A. Corti, Factoring birational maps of threefolds after Sarkisov. *J. Algebraic Geom*. **4** (1995), 223–254. MR1311348 Zbl 0866.14007Google Scholar

[4]

D. Eisenbud, J. Harris, On varieties of minimal degree (a centennial account). In: *Algebraic geometry, Bowdoin*, 1985 (*Brunswick, Maine*, 1985), volume 46 of *Proc. Sympos. Pure Math*., 3–13, Amer. Math. Soc. 1987. MR927946 Zbl 0646.14036Google Scholar

[5]

M. Gromov, Oka’s principle for holomorphic sections of elliptic bundles. *J. Amer. Math. Soc*. **2** (1989), 851–897. MR1001851 Zbl 0686.32012Google Scholar

[6]

R. Hartshorne, *Algebraic geometry*. Springer 1977. MR0463157 Zbl 0367.14001Google Scholar

[7]

J.-M. Hwang, Geometry of minimal rational curves on Fano manifolds. In: *School on Vanishing Theorems and Effective Results in Algebraic Geometry* (*Trieste*, 2000), volume 6 of *ICTP Lect. Notes*, 335–393, Abdus Salam Int. Cent. Theoret. Phys., Trieste 2001. MR1919462 Zbl 1086.14506Google Scholar

[8]

J.-M. Hwang, Rigidity of rational homogeneous spaces. In: *International Congress of Mathematicians. Vol. II*, 613–626, Eur. Math. Soc., Zürich 2006. MR2275613 Zbl 1096.14035Google Scholar

[9]

P. Ionescu, F. Russo, Conic-connected manifolds. *J. Reine Angew. Math*. **644** (2010), 145–157. MR2671777 Zbl 1200.14078Web of ScienceGoogle Scholar

[10]

S. Kebekus, Families of singular rational curves. *J. Algebraic Geom*. **11** (2002), 245–256. MR1874114 Zbl 1054.14035CrossrefGoogle Scholar

[11]

J. Kollár, *Rational curves on algebraic varieties*. Springer 1996. MR1440180 Zbl 0877.14012Google Scholar

[12]

R. Lazarsfeld, *Positivity in algebraic geometry. I, II*. Springer 2004. MR2095471 MR2095472 Zbl 1093.14501 Zbl 1066.14021Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.