[1]

H. Alencar, Minimal hypersurfaces of ℝ^{2m} invariant by SO(*m*) × SO(*m*). *Trans*. *Amer*. *Math*. *Soc*. **337** (1993), 129–141. MR1091229 Zbl 0776.53035CrossrefGoogle Scholar

[2]

H. Alencar, A. Barros, O. Palmas, J. G. Reyes, W. Santos, O(*m*) × O(*n*)-invariant minimal hypersurfaces in ℝ^{m}+^{n}. *Ann*. *Global Anal*. *Geom*. **27** (2005), 179–199. MR2131912 Zbl 1077.53007CrossrefGoogle Scholar

[3]

F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. *Mem*. *Amer*. *Math*. *Soc*. **4** (1976), viii+199 pp. MR0420406 Zbl 0327.49043Google Scholar

[4]

J. L. Barbosa, M. do Carmo, J. Eschenburg, Stability of hypersurfaces of constant mean curvature in Riemannian manifolds. *Math*. *Z*. **197** (1988), 123–138. MR917854 Zbl 0653.53045CrossrefGoogle Scholar

[5]

N. Kapouleas, S.-D. Yang, Minimal surfaces in the three-sphere by doubling the Clifford torus. *Amer*. *J*. *Math*. **132** (2010), 257–295. MR2654775 Zbl 1198.53060CrossrefGoogle Scholar

[6]

H. Karcher, U. Pinkall, I. Sterling, New minimal surfaces in S^{3}. *J*. *Differential Geom*. **28** (1988), 169–185. MR961512 Zbl 0653.53004CrossrefGoogle Scholar

[7]

H. B. Lawson, Jr., Complete minimal surfaces in S^{3}. *Ann*. *of Math*. (2) **92** (1970), 335–374. MR0270280 Zbl 0205.52001CrossrefGoogle Scholar

[8]

J. M. Manzano, J. Plehnert, F. Torralbo, Compact embedded minimal surfaces in 𝕊^{2} × 𝕊^{1}. *Comm*. *Anal*. *Geom*. **24** (2016), 409–429. MR3514565 Zbl 1345.53063Google Scholar

[9]

W. H. Meeks, H. Rosenberg, The theory of minimal surfaces in *M* × ℝ. *Comment*. *Math*. *Helv*. **80** (2005), 811–858. MR2182702 Zbl 1085.53049Google Scholar

[10]

F. Morgan, Clusters minimizing area plus length of singular curves. *Math*. *Ann*. **299** (1994), 697–714. MR1286892 Zbl 0805.49025CrossrefGoogle Scholar

[11]

F. Morgan, *Geometric measure theory*. Academic Press 1995. MR1326605 Zbl 0819.49024Google Scholar

[12]

F. Morgan, In polytopes, small balls about some vertex minimize perimeter. *J*. *Geom*. *Anal*. **17** (2007), 97–106. MR2302876 Zbl 1132.49036CrossrefWeb of ScienceGoogle Scholar

[13]

R. H. L. Pedrosa, The isoperimetric problem in spherical cylinders. *Ann*. *Global Anal*. *Geom*. **26** (2004), 333–354. MR2103404 Zbl 1082.53066CrossrefGoogle Scholar

[14]

R. H. L. Pedrosa, M. Ritoré, Isoperimetric domains in the Riemannian product of a circle with a simply connected space form and applications to free boundary problems. *Indiana Univ*. *Math*. *J*. **48** (1999), 1357–1394. MR1757077 Zbl 0956.53049Google Scholar

[15]

A. Ros, The isoperimetric problem. In: *Global theory of minimal surfaces*, volume 2 of *Clay Math*. *Proc*., 175–209, Amer. Math. Soc. 2005. MR2167260 Zbl 1125.49034Google Scholar

[16]

H. Rosenberg, Minimal surfaces in 𝕄^{2} × ℝ. *Illinois J*. *Math*. **46** (2002), 1177–1195. MR1988257 Zbl 1036.53008Google Scholar

[17]

F. Torralbo, Compact minimal surfaces in the Berger spheres. *Ann*. *Global Anal*. *Geom*. **41** (2012), 391–405. MR2897028 Zbl 1242.53076CrossrefWeb of ScienceGoogle Scholar

[18]

Y. Xin, *Minimal submanifolds and related topics*, volume 8 of *Nankai Tracts in Mathematics*. World Scientific, River Edge, NJ 2003. MR2035469 Zbl 1055.53047Google Scholar

## Comments (0)

General note:By using the comment function on degruyter.com you agree to our Privacy Statement. A respectful treatment of one another is important to us. Therefore we would like to draw your attention to our House Rules.