Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Advances in Geometry

Managing Editor: Grundhöfer, Theo / Joswig, Michael

Editorial Board: Bamberg, John / Bannai, Eiichi / Cavalieri, Renzo / Coskun, Izzet / Duzaar, Frank / Eberlein, Patrick / Gentili, Graziano / Henk, Martin / Kantor, William M. / Korchmaros, Gabor / Kreuzer, Alexander / Lagarias, Jeffrey C. / Leistner, Thomas / Löwen, Rainer / Ono, Kaoru / Ratcliffe, John G. / Scharlau, Rudolf / Scheiderer, Claus / Van Maldeghem, Hendrik / Weintraub, Steven H. / Weiss, Richard

4 Issues per year


IMPACT FACTOR 2016: 0.552

CiteScore 2016: 0.61

SCImago Journal Rank (SJR) 2016: 0.564
Source Normalized Impact per Paper (SNIP) 2016: 1.021

Mathematical Citation Quotient (MCQ) 2016: 0.45

Online
ISSN
1615-7168
See all formats and pricing
More options …
Ahead of print

Issues

The index of symmetry of three-dimensional Lie groups with a left-invariant metric

Silvio Reggiani
  • Corresponding author
  • CONICET and Universidad Nacional de Rosario, Dpto. de Matemática, ECEN-FCEIA, Av. Pellegrini 250, 2000 Rosario, Argentina
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-01-24 | DOI: https://doi.org/10.1515/advgeom-2017-0061

Abstract

We determine the index of symmetry of 3-dimensional unimodular Lie groups with a left-invariant metric. In particular, we prove that every 3-dimensional unimodular Lie group admits a left-invariant metric with positive index of symmetry. We also study the geometry of the quotients by the so-called foliation of symmetry, and we explain in what cases the group fibers over a 2-dimensional space of constant curvature.

Keywords: Index of symmetry; unimodular Lie group; distribution of symmetry; naturally reductive space

MSC 2010: 53C30; 53C35

References

  • [1]

    J. Berndt, C. Olmos, S. Reggiani, Compact homogeneous Riemannian manifolds with low coindex of symmetry. J. Eur. Math. Soc. 19 (2017), 221–254. MR3584562 Zbl 1359.53041CrossrefWeb of ScienceGoogle Scholar

  • [2]

    S. Console, C. Olmos, Curvature invariants, Killing vector fields, connections and cohomogeneity. Proc. Amer. Math. Soc. 137 (2009), 1069–1072. MR2457448 Zbl 1161.53034Google Scholar

  • [3]

    K. Y. Ha, J. B. Lee, Left invariant metrics and curvatures on simply connected three-dimensional Lie groups. Math. Nachr. 282 (2009), 868–898. MR2530885 Zbl 1172.22006CrossrefWeb of ScienceGoogle Scholar

  • [4]

    K. Y. Ha, J. B. Lee, The isometry groups of simply connected 3-dimensional unimodular Lie groups. J. Geom. Phys. 62 (2012), 189–203. MR2864471 Zbl 1247.22012CrossrefWeb of ScienceGoogle Scholar

  • [5]

    H. Kodama, A. Takahara, H. Tamaru, The space of left-invariant metrics on a Lie group up to isometry and scaling. Manuscripta Math. 135 (2011), 229–243. MR2783396 Zbl 1230.53048CrossrefWeb of ScienceGoogle Scholar

  • [6]

    B. Kostant, Holonomy and the Lie algebra of infinitesimal motions of a Riemannian manifold. Trans. Amer. Math. Soc. 80 (1955), 528–542. MR0084825 Zbl 0066.16001CrossrefGoogle Scholar

  • [7]

    J. Lauret, Degenerations of Lie algebras and geometry of Lie groups. Differential Geom. Appl. 18 (2003), 177–194. MR1958155 Zbl 1022.22019CrossrefGoogle Scholar

  • [8]

    J. Milnor, Curvatures of left invariant metrics on Lie groups. Advances in Math. 21 (1976), 293–329. MR0425012 Zbl 0341.53030CrossrefGoogle Scholar

  • [9]

    C. Olmos, S. Reggiani, H. Tamaru, The index of symmetry of compact naturally reductive spaces. Math. Z. 277 (2014), 611–628. MR3229956 Zbl 1302.53056Web of ScienceCrossrefGoogle Scholar

  • [10]

    F. Podestà, The index of symmetry of a flag manifold. Rev. Mat. Iberoam. 31 (2015), 1415–1422. MR3438395 Zbl 1339.53052CrossrefWeb of ScienceGoogle Scholar

  • [11]

    S. Vukmirović, Classification of left-invariant metrics on the Heisenberg group. J. Geom. Phys. 94 (2015), 72–80. MR3350270 Zbl 1319.53024CrossrefWeb of ScienceGoogle Scholar

About the article


Received: 2016-07-11

Published Online: 2018-01-24


Citation Information: Advances in Geometry, ISSN (Online) 1615-7168, ISSN (Print) 1615-715X, DOI: https://doi.org/10.1515/advgeom-2017-0061.

Export Citation

© 2017 Walter de Gruyter GmbH, Berlin/Boston. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in